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1. Divergence tendency of θn (Sec. 3.1)
We prove in this section that, under certain reasonable

conditions, the random variable ∆ diverges almost surely,
preventing the weakest networks (Dθ, Tα) to learn any-
thing.

Let us first define:
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Let us denote αi, the contribution to the stochastic gradi-
ent descent (SGD) of training iteration i. This assumes that
the sequences

(
Φi

D

)
i∈N and
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)
i∈N satisfies:
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where λ quantifies a learning rate. Then:
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Now let us define the sequence (εi)i∈N as:

P (∆i > 0) =
1

2
+ εi (5)

Here, εi represents the intrinsic bias at iteration i (see
Sec. 3.1). Thus,

∆i+1 = ∆i + 2λεiαi (6)

and then:

∆n = ∆0 + 2λ

n∑
i=0

αiεi (7)

The series
∑

αiεi has to be summable, which imposes
constraints on the sequence of terms (εi)i∈N. To illustrate
this point, let us take the following example:
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With β a random Bernoulli variable of probability pa-
rameter p < 0.5, to reflect the upward improvement ten-
dency. The choice of denominators reflects the fact that,
since the model converges toward an optimum, the incre-
ments of the SGD decrease over iterations. Then,
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β

i+ 1
, and

n∑
i=0

αiεi −−−−→
n→∞

+∞ (9)

Then,

P [0 < ∆n] −−−−→
n→∞

1, and θn −−−−→
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+∞ (10)

2. Proof of equation 14 (Sec. 4.2)
We show in this section the benefit of taking pixels with

values in the neighbourhood Vη of the mode of ∆, com-
pared to pixels with negative ∆.

Let us assume that:

• ∆ ∼ N
(
µ, σ2

)
• ∃r > 0, E [ΦF |∆ ∈ Vη] < E [ΦF |∆ < 0]− r

The second point illustrates mathematically the fact that
moving pixels in the left tail correspond to failed flow pre-
dictions because of smoothing issues (see Figure 3). Then,

L1 = E [ΦD|∆ ∈ Vη] (11)
= E [∆|∆ ∈ Vη] + E [ΦF |∆ ∈ Vη] (12)



From our first hypothesis, and using an integral substitu-
tion, we have:

E [∆|∆ ∈ Vη] =
1√
2πσ

∫ µ+η

µ−η

xe−
(x−µ)2

2σ2 (13)

=
1√
2πσ

∫ η

−η

(σx+ µ) e−
x2

2 (14)

=
µ√
2πσ

∫ η

−η

e−x2/2 (15)

If η is low enough, a linear approximation gives us:
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Therefore, from our second hypothesis:
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Let us name:

ε = −E [∆|∆ < 0] (19)

With an integral substitution, we have:
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As,
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Then, if µ is high enough, in other words, if ∆ is enough
shifted to the right (see Fig. 1), then:

0 < r − ε (23)

We have,

L1 < L2 +
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η − (r − ε) (24)

Additionally, if η is low enough, then:
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3. Epipolar constraint
Let M the fundamental matrix defined as:

M = K−T [tα]× RαK−1 (26)

Let (a, b) such that: a
b
c

 = Mp (27)

Finally let us define:

pδ = p+ Fδ (p) (28)

The epipolar loss that we used writes:

Lepipolar =
Mp · pδ√
a2 + b2

(29)

4. More results
We give in Tab. 1 additional quantitative results of Coop-

Net trained on Cityscapes and evaluated on KITTI to assess
the transfer learning capacity of our model. As well as re-
sults of CoopNet trained on both Cityscapes and KITTI and
evaluated on KITTI. In these experiments we show substan-
tial improvements over the benchmarks displayed. More
qualitative results are also presented in Fig. 1 and Fig. 2.



Dataset Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

CS+K

Zhou et al.[42] M 0.198 1.836 6.565 0.275 0.718 0.901 0.960
GeoNet[40] M 0.153 1.328 5.7370 0.232 0.802 0.934 0.972
DF-Net[43] M 0.146 1.182 5.213 0.2080 0.818 0.943 0.978
Bian et al.[1] M 0.128 1.047 5.240 0.2080 0.846 0.947 0.976
CoopNet M 0.122 0.972 5.127 0.202 0.853 0.952 0.980

CS

GeoNet[40] M 0.210 1.723 6.595 0.281 0.681 0.891 0.960
Struct2Depth[2] M+S 0.153 1.109 5.557 0.227 0.796 0.934 0.975
GLNet[3] M 0.129 1.044 5.361 0.212 0.843 0.938 0.976
CoopNet M 0.125 1.157 5.251 0.209 0.845 0.944 0.978

Table 1: Results of depth estimations. For each metric the best result is displayed in bold. The depth cutoff is set to 80m.
For red metrics, lower is better. For blue metrics, higher is better. A post-processing refinement as done by [2] is performed
in these experiments. Train: M - Self-supervised methods. S - Use of an off-the-shelf semantic algorithms. CS+K: Trained
on KITTI and Cityscapes combined and evaluated on KITTI. CS: Trained on Cityscapes and evaluated on KITTI.

Figure 1: Comparison of depth map estimation algorithms in challenging situations on KITTI.



Figure 2: Comparison of depth map estimation algorithms in challenging situations on KITTI. Note: For the High-Texture
case, both Monodepth2 and Li et al. show copy-artefacts around the grid (see green rectangles).


