Supplementary material to "Rebalancing gradient to improve self-supervised co-training of depth, odometry and optical flow predictions"

Marwane Hariat¹, Antoine Manzanera¹, David Filliat^{1,2}

¹U2IS, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France ²INRIA FLOWERS

{marwane.hariat, antoine.manzanera, david.filliat}@ensta-paris.fr

1. Divergence tendency of θ_n (Sec. 3.1)

We prove in this section that, under certain reasonable conditions, the random variable Δ diverges almost surely, preventing the weakest networks $(\mathcal{D}_{\theta}, \mathcal{T}_{\alpha})$ to learn any-thing.

Let us first define:

$$\Phi_D = \Phi\left(I_t, \hat{I}_s^{\theta, \alpha}\right)$$

$$\Phi_F = \Phi\left(I_t, \hat{I}_s^{\theta, \alpha}\right)$$
(1)

Let us denote α_i , the contribution to the stochastic gradient descent (SGD) of training iteration *i*. This assumes that the sequences $(\Phi_D^i)_{i \in \mathbb{N}}$ and $(\Phi_F^i)_{i \in \mathbb{N}}$ satisfies:

$$\Phi_D^{i+1} = \Phi_D^i - \lambda \mathbb{P} \left(\Delta_i < 0 \right) \alpha_i$$

$$\Phi_F^{i+1} = \Phi_F^i - \lambda \mathbb{P} \left(\Delta_i > 0 \right) \alpha_i$$
(2)

where λ quantifies a learning rate. Then:

$$\Delta_{i+1} = \Delta_i + \lambda \alpha_i \left(\mathbb{P} \left(\Delta_i > 0 \right) - \mathbb{P} \left(\Delta_i < 0 \right) \right)$$
(3)

$$= \Delta_i + \lambda \alpha_i \Big(2\mathbb{P} \left(\Delta_i > 0 \right) - 1 \Big) \tag{4}$$

Now let us define the sequence $(\varepsilon_i)_{i \in \mathbb{N}}$ as:

$$\mathbb{P}\left(\Delta_i > 0\right) = \frac{1}{2} + \varepsilon_i \tag{5}$$

Here, ε_i represents the intrinsic bias at iteration *i* (see Sec. 3.1). Thus,

$$\Delta_{i+1} = \Delta_i + 2\lambda\varepsilon_i\alpha_i \tag{6}$$

and then:

$$\Delta_n = \Delta_0 + 2\lambda \sum_{i=0}^n \alpha_i \varepsilon_i \tag{7}$$

The series $\sum \alpha_i \varepsilon_i$ has to be summable, which imposes constraints on the sequence of terms $(\varepsilon_i)_{i \in \mathbb{N}}$. To illustrate this point, let us take the following example:

$$\alpha_i = \frac{(-1)^{\beta}}{\sqrt{i+1}} \text{ and } \varepsilon_i = \frac{1}{\sqrt{i+1}}$$
(8)

With β a random Bernoulli variable of probability parameter p < 0.5, to reflect the upward improvement tendency. The choice of denominators reflects the fact that, since the model converges toward an optimum, the increments of the SGD decrease over iterations. Then,

$$\alpha_i \varepsilon_i = \frac{(-1)^{\beta}}{i+1}, \text{ and } \sum_{i=0}^n \alpha_i \varepsilon_i \xrightarrow[n \to \infty]{} +\infty \qquad (9)$$

Then,

$$\mathbb{P}\left[0 < \Delta_n\right] \xrightarrow[n \to \infty]{} 1, \text{ and } \theta_n \xrightarrow[n \to \infty]{} +\infty \qquad (10)$$

2. Proof of equation 14 (Sec. 4.2)

We show in this section the benefit of taking pixels with values in the neighbourhood \mathcal{V}_{η} of the mode of Δ , compared to pixels with negative Δ .

Let us assume that:

•
$$\Delta \sim \mathcal{N}(\mu, \sigma^2)$$

• $\exists r > 0, \mathbb{E}[\Phi_F | \Delta \in \mathcal{V}_\eta] < \mathbb{E}[\Phi_F | \Delta < 0] - r$

The second point illustrates mathematically the fact that moving pixels in the left tail correspond to failed flow predictions because of smoothing issues (see Figure 3). Then,

$$L_1 = \mathbb{E}\left[\Phi_D \middle| \Delta \in \mathcal{V}_\eta\right] \tag{11}$$

$$= \mathbb{E}\left[\Delta | \Delta \in \mathcal{V}_{\eta}\right] + \mathbb{E}\left[\Phi_{F} | \Delta \in \mathcal{V}_{\eta}\right]$$
(12)

From our first hypothesis, and using an integral substitution, we have:

$$\mathbb{E}\left[\Delta|\Delta\in\mathcal{V}_{\eta}\right] = \frac{1}{\sqrt{2\pi\sigma}} \int_{\mu-\eta}^{\mu+\eta} x e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
(13)

$$= \frac{1}{\sqrt{2\pi\sigma}} \int_{-\eta}^{\eta} (\sigma x + \mu) e^{-\frac{x^2}{2}}$$
(14)

$$=\frac{\mu}{\sqrt{2\pi\sigma}}\int_{-\eta}^{\eta}e^{-x^2/2}$$
 (15)

If η is low enough, a linear approximation gives us:

$$\mathbb{E}\left[\Delta|\Delta\in\mathcal{V}_{\eta}\right]\approx\frac{2\mu}{\sqrt{2\pi\sigma}}\eta\tag{16}$$

Therefore, from our second hypothesis:

$$L_1 < \frac{2\mu}{\sqrt{2\pi\sigma}}\eta + \mathbb{E}\left[\Phi_F|\Delta<0\right] - r \tag{17}$$

$$<\frac{2\mu}{\sqrt{2\pi\sigma}}\eta - r - \mathbb{E}\left[\Delta|\Delta<0\right] + L_2 \qquad (18)$$

Let us name:

$$\varepsilon = -\mathbb{E}\left[\Delta | \Delta < 0\right] \tag{19}$$

With an integral substitution, we have:

$$\varepsilon = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{0} -xe^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
(20)

$$= \frac{1}{\sqrt{2\pi\sigma}} \int_0^\infty x e^{-\frac{(x+\mu)^2}{2\sigma^2}}$$
(21)

As,

$$\frac{1}{\sqrt{2\pi\sigma}} \int_0^\infty x e^{-\frac{(x+\mu)^2}{2\sigma^2}} \xrightarrow[\mu \to \infty]{} 0$$
 (22)

Then, if μ is high enough, in other words, if Δ is enough shifted to the right (see Fig. 1), then:

$$0 < r - \varepsilon \tag{23}$$

We have,

$$L_1 < L_2 + \frac{2\mu}{\sqrt{2\pi\sigma}}\eta - (r - \varepsilon) \tag{24}$$

Additionally, if η is low enough, then:

$$\frac{2\mu}{\sqrt{2\pi\sigma}}\eta < r - \varepsilon$$

$$L_1 < L_2$$
(25)

3. Epipolar constraint

Let M the fundamental matrix defined as:

$$\mathbf{M} = \mathbf{K}^{-\mathrm{T}} \left[\mathbf{t}_{\alpha} \right]_{\times} \mathbf{R}_{\alpha} \mathbf{K}^{-1}$$
(26)

Let (a, b) such that:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{M}p \tag{27}$$

Finally let us define:

$$p_{\delta} = p + F_{\delta}\left(p\right) \tag{28}$$

The epipolar loss that we used writes:

$$\mathcal{L}_{\text{epipolar}} = \frac{\mathbf{M}p \cdot p_{\delta}}{\sqrt{a^2 + b^2}}$$
(29)

4. More results

We give in Tab. 1 additional quantitative results of **Coop-Net** trained on Cityscapes and evaluated on KITTI to assess the transfer learning capacity of our model. As well as results of **CoopNet** trained on both Cityscapes and KITTI and evaluated on KITTI. In these experiments we show substantial improvements over the benchmarks displayed. More qualitative results are also presented in Fig. 1 and Fig. 2.

Dataset	Method	Train	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
	Zhou et al.[42]	М	0.198	1.836	6.565	0.275	0.718	0.901	0.960
	GeoNet[40]	M	0.153	1.328	5.7370	0.232	0.802	0.934	0.972
CS+K	DF-Net[43]	М	0.146	1.182	5.213	0.2080	0.818	0.943	0.978
	Bian et al.[1]	М	0.128	1.047	5.240	0.2080	0.846	0.947	0.976
	CoopNet	М	0.122	0.972	5.127	0.202	0.853	0.952	0.980
	GeoNet[40]	M	0.210	1.723	6.595	0.281	0.681	0.891	0.960
	Struct2Depth[2]	M+S	0.153	1.109	5.557	0.227	0.796	0.934	0.975
CS	GLNet[3]	М	0.129	1.044	5.361	0.212	0.843	0.938	0.976
	CoopNet	М	0.125	1.157	5.251	0.209	0.845	0.944	0.978

Table 1: **Results of depth estimations**. For each metric the best result is displayed in bold. The depth cutoff is set to 80m. For red metrics, lower is better. For blue metrics, higher is better. A post-processing refinement as done by [2] is performed in these experiments. **Train:** M - Self-supervised methods. S - Use of an off-the-shelf semantic algorithms. CS+K: Trained on KITTI and Cityscapes combined and evaluated on KITTI. CS: Trained on Cityscapes and evaluated on KITTI.

Figure 1: Comparison of depth map estimation algorithms in challenging situations on KITTI.

Figure 2: Comparison of depth map estimation algorithms in challenging situations on KITTI. **Note**: For the High-Texture case, both *Monodepth2* and *Li et al.* show copy-artefacts around the grid (see green rectangles).