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A. Implementation Details
A.1. Merging Technique to Truncate Subject-

Object Pairs

A merging technique is employed to merge multiple
bounding boxes into a single bounding box so that the
merged bounding box contains maximized information
about the object. The merging is realized by eliminating
small bounding boxes that are mostly overlapped by larger
bounding boxes. The detailed procedure is described in Al-
gorithm 1. In these algorithms, a bounding box b is defined
as b = (x1, y1, x2, y2), where (x1, y1) is the coordinates
of the upper left side of the bounding box, and (x2, y2) is
those of the lower right side. An input of Algorithms 1 is a
collection of bounding boxes for each object class sorted by
an area of bounding box in descending order (Bcls).

The inclusion of bounding boxes is determined by the
overlapping threshold parameter Oth. Table 1 shows the
effect of the parameter Oth on SePiR’s mR@100 scores for
SGDet task. From this result, we set Oth = 0.95 for all the
experiments in this work.

Oth mR@100
0.90 18.7
0.95 19.7
1.00 17.2

Table 1. Effect of the overlapping threshold parameter Oth on
SGDet task. mR@100 values of SePiR+Reweight with different
Oth are listed.

A.2. Network Architectures

SePiR consists of various network architectures: a rela-
tional encoder, a projector, an object classifier, and a predi-
cate classifier except for an attention-based object detector.
The details of the network architectures are shown in Ta-
ble 2.

Algorithm 1 Merging Technique
Input: Bcls

Output: Bmerged

Bdel ← []
comb← combinations(Bcls)
for bi, bj ∈ comb do

if INCLUDE CHECK(bi, bj) then
Bdel.append(bj)

end if
end for
Bmerged ← Bcls −Bdel ▷ Remove included box

function INCLUDE CHECK(bi, bj)
Aj = (x2j − x1j)× (y2j − y1j) ▷ Area of bj
xo1 = max(x1i, x1j), yo1 = max(y1i, y1j)
xo2 = min(x2i, x2j), yo2 = min(y2i, y2j)
Ao = max(0, xo2 − xo1)×max(0, yo2 − yo1)

▷ Area of overlapping
if Ao/Aj ≥ Oth then

return True
else

return False
end if

end function

Aside from architectures described in the paper, our im-
plementations include a refiner, which consists of 2 fully
connected layers, before a relational encoder. An overall
architecture containing the refiner is shown in Fig. 1. Since
the refiner is trained by self-supervised learning in combi-
nation with the relational encoder and the projector, it plays
a role in enhancing the visual features by incorporating the
information of relational features through the backpropaga-
tion of a loss. In training classifiers, enhanced visual fea-
tures by the refiner are fed to the object classifier.



Component Architecture flow
Relational encoder FC → FC → FC → ReLU → FC → BN → ReLU → FC → BN → ReLU → FC

Projector FC → BN → ReLU → FC → BN → ReLU → FC
Object classifier FC → ReLU → FC → ReLU → FC

Predicate classifier FC → ReLU → FC → ReLU → FC

Table 2. The detailed architecture of each component in SePiR. FC is a fully-connected layer, and BN is a batch normalization layer.
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Figure 1. Overall pipeline of the proposed SePiR including a refiner.
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Figure 2. (a) Precision and (b) the number of the detected objects
by Conditional DETR as a function of the threshold for the confi-
dence scores of object candidates.

A.3. Choice of Threshold for Pair Confidence

In the proposed method, subject-object pairs are trun-
cated by using the pair confidence cpair = cs × co, where
cs and co are the confidence scores of the subject and ob-
ject generated by the pre-trained object detector. Only the
pairs satisfying a requirement cpair > cth are extracted for
the subsequent process. To determine the threshold cth, we
examine the confidence scores cs, co of the object detector.
Fig 2 (a) shows precision of object detection and (b) shows
the number of detected objects as a function of the threshold

parameter for the confidence score. We used Conditional
DETR [14] for the experiment. Obviously, as the threshold
of confidence score increases, the precision also increases
while the number of the detected objects decreases. High
precision is imperative for preserving relationships between
subject-object pairs. On the other hand, the large number
of detected objects contributes to increasing variations of
the data. Since these two objectives are incompatible, we
should take a balanced threshold parameter considering the
trade-off. In this case, we want to extract as many objects
as possible while keeping the precision at about 0.9. There-
fore, we choose a threshold for the object confidence cs, co
as 0.3, and set cth = 0.09 (= 0.32) as a threshold for the
pair confidence cpair.

A.4. Debiasing Methods for Trade-off Curves

With trade-off curves, we are able to judge an advan-
tage of the model if its curve locates in the upper right area
where both R@100 and mR@100 are high. To plot such
curves, we incorporate six methods to deal with the long-
tailed predicate class distribution. We pick them so that
these methods cover the range from low R/mR@K to high
R/mR@K. The details of these methods are as follows.

• Cross Entropy uses a standard cross entropy.

• CBR utilizes Class-Balanced Re-weighting loss [7].



• Bilvl. Samp. uses a bilevel sampling strategy [11] for
re-balancing the data distribution.

• Reweight uses a loss function whose weight is com-
puted using counts of each predicate as below.

LReweight(i) =
1

ni
CE i, (1)

where ni is the number of training samples belonging
to the i-th predicate class, and CE i is the cross entropy
loss for the i-th predicate class.

• Bilvl. Samp. + Reweight simultaneously uses Bilvl.
Samp. and Reweight above.

• RTPB (CB) employs Resistance Training using Prior
Bias with a count resistance bias [3].

For the training of the classifiers in SePiR with these
methods, an optimization strategy is as follows. The learn-
ing rate starts from an initial value lr init and linearly in-
creases every batch iteration up to lrmax for 500 iterations.
After this warm-up phase, the learning rate stays lrmax.
We set lr init = 0.008 and lrmax = 0.128 for Cross En-
tropy, CBR, Bilvl. Samp., and RTPB (CB) methods, and
lr init = 0.0005 and lrmax = 0.008 for Reweight and Bilvl.
Samp. + Reweight methods.

A.5. Acceleration of Data Augmentation Process

We realize augmentation by replacing the visual features
of subject-object pairs. A naive implementation of the aug-
mentation leads to a non-negligible computation time be-
cause the object detector runs twice to extract visual fea-
tures for each subject-object pair. Since one iteration con-
sists of about 1,000 subject-object pairs, the augmentation
process takes a long time, and the total training speed be-
comes very slow. To accelerate the augmentation process,
we implement two techniques: feature caching and object-
wise replacement.

Feature caching. Before training self-supervised learn-
ing, we create a cached dataset of visual features extracted
from all the images of the train set of Visual Genome [10]
by utilizing target object labels. The labeled cached features
are utilized for the data augmentation in the self-supervised
step. With this technique, we can obtain visual features
without running the object detector again.

Object-wise replacement. We perform feature replace-
ment in an object-wise manner, not pair-wise, because in
a single image the number of the objects (< 100) is much
smaller than that of the subject-object pairs (∼ 1, 000).
Instead of replacing features for each subject-object pair,
we replace the features of the objects from which all the

subject-object pairs are formed. This can drastically reduce
the number of replacements and accelerate the augmenta-
tion process. Although this method may reduce the varia-
tion of the data augmentation, it is acceptable since a suffi-
cient number of different augmentations are applied while
the entire training process.

B. Quantitative Studies

B.1. Comparison with the Previous Methods

Recalls and mean recalls @K=20, 50, and 100 are listed
in Tables 3 and 4, respectively. Also, the trade-off curves
at K=20, 50 are shown in Fig. 3 and 4. A similar trend can
be seen at different K values. The proposed method is com-
parable or higher performance than the previous methods in
PredCls and SGDet tasks.

Table 5 shows comparison of mean recalls for “head,”
“body,” and “tail” categories of predicates between SePiR
and DTrans. Following [11], above three categories are
divided according to the number of instances in the train-
ing split as “head (more than 10 k instances),” “body (from
0.5 k to 10 k),” and “tail (less than 0.5 k).” Although the
overall mR score of DTrans is higher than SePiR, the result
shows that our method is more effective to predict long-
tailed rare relationships. Since abstract predicates locate in
the head categories, predicting informative predicates on the
tail categories leads to decreasing recall of the head cate-
gories. The better ability to predict informative predicates
the trained model has, the more decrease in the performance
on the head categories is observed. This is why the mR
score on the head categories of SePiR is lower than that of
DTrans.

B.2. Experiments with Limited Labeled Dataset

Comparison to state-of-the-art supervised methods. In
the paper, we show that SePiR outperforms state-of-the-art
supervised methods (BGNN [11] and DTrans [3]) with the
limited labeled dataset on SGDet. We also exhibit the exper-
imental result on PredCls, and the result is shown in Fig. 5.
SePiR also achieves higher performance than state-of-the-
art supervised methods on PredCls. Since PredCls does not
depend on the performance of the object detector, the result
indicates that SePiR is able to capture the robust predicate
representation.

Comparison to SePiR in a supervised manner. We also
would like to corroborate that our self-supervised method
purely contributes to acquiring the robust predicate repre-
sentation without depending on the architectures. To en-
sure this, we compare SePiR with SePiR trained in a su-
pervised manner on PredCls. The result is shown in Fig. 6.
Obviously, the gap between the performance of SePiR and



PredCls SGCls SGDet
Models R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100
KERN [5] 65.8 67.6 36.7 37.4 27.1 29.8
GPS-Net [12] 60.7 66.9 68.8 36.1 39.2 40.1 22.6 28.4 31.7
PCPL [20] 50.8 52.6 27.6 28.4 14.6 18.6
BGNN [11] 59.2 61.3 37.4 38.5 31.0 35.8
Seq2Seq-RL [13] 60.3 66.4 68.5 34.5 38.3 39.0 22.1 30.9 34.4
DTrans + RTPB (CB) [3] 60.3 66.4 68.5 34.5 38.3 39.0 22.1 30.9 34.4
Motifs [21, 19] 58.5 65.2 67.1 32.9 35.8 36.5 21.4 27.2 30.3
Motifs + TDE [18] 38.7 50.8 55.8 21.8 27.2 29.5 5.9 7.4 8.4
Motifs + BA-SGG [9] 44.4 50.7 52.5 26.9 30.1 31.0 16.8 23.0 26.9
Motifs + RTPB (CB) [3] 40.4 42.5 26.0 26.9 19.0 22.5
VCTree [19] 60.1 66.4 68.1 35.2 38.1 38.8 22.0 27.9 31.3
VCTree + TDE [18] 39.1 49.9 54.5 22.8 28.8 31.2 14.3 19.6 23.3
VCTree + BA-SGG [9] 43.9 50.0 51.8 30.2 34.0 35.0 15.8 21.7 25.5
VCTree + RTPB (CB) [3] 41.2 43.3 28.7 30.0 18.1 21.3
SePiR + Bilevel sampling 55.1 62.3 64.6 31.9 35.6 36.8 20.5 27.5 32.1
SePiR + RTPB (CB) 24.0 29.7 31.8 14.2 17.2 18.1 8.9 12.8 15.6
SePiR + Reweight 20.2 26.3 28.9 11.7 14.7 15.9 9.5 13.6 16.6

Table 3. Recalls of PredCls, SGCls, and SGDet on VG. The scores of the existing methods are referred from the cited papers.

PredCls SGCls SGDet
Models mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100
KERN [5] 17.7 19.2 9.4 10.0 6.4 7.3
GPS-Net [12] 17.4 21.3 22.8 10.0 11.8 12.6 6.9 8.7 9.8
PCPL [20] 35.2 37.8 18.6 19.6 9.5 11.7
BGNN [11] 30.4 32.9 14.3 16.5 10.7 12.6
Seq2Seq-RL [13] 21.3 26.1 30.5 11.9 14.7 16.2 7.5 9.6 12.1
DTrans + RTPB (CB) [3] 30.3 36.2 38.1 19.1 21.8 22.8 12.7 16.5 19.0
Motifs [21, 19] 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6
Motifs + TDE [18] 18.5 24.9 28.3 11.1 13.9 15.2 6.6 8.5 9.9
Motifs + BA-SGG [9] 24.8 29.7 31.7 14.0 16.5 17.5 10.7 13.5 15.6
Motifs + RTPB (CB) [3] 28.8 35.3 37.7 16.3 19.4 20.6 9.7 13.1 15.5
VCTree [19] 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0
VCTree + TDE [18] 17.2 23.3 26.6 8.9 11.8 13.4 6.3 8.6 10.3
VCTree + BA-SGG [9] 26.2 30.6 32.6 17.2 20.1 21.2 10.6 13.5 15.7
VCTree + RTPB (CB) [3] 27.3 33.4 35.6 20.6 24.5 25.8 9.6 12.8 15.1
SePiR + Bilevel sampling 25.2 30.8 33.2 13.9 17.0 18.5 8.2 11.0 13.1
SePiR + RTPB (CB) 31.7 37.8 40.3 17.0 19.7 20.7 11.2 14.2 16.4
SePiR + Reweight 32.1 39.9 43.2 17.6 21.6 23.6 12.0 16.5 19.7

Table 4. Mean recalls of PredCls, SGCls, and SGDet on VG. The scores of the existing methods are referred from the cited papers. The
bold font indicates the best mR for each task.
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Figure 3. Trade-off curves between R@50 and mR@50 comparing SePiR and the existing methods (Motifs [21], VCTree [19], BGNN [11],
and DTrans [3]) for PredCls, SGCls, and SGDet tasks on VG. rep means our reproduction, and ref means reference from the original papers.

SePiR (SL) becomes larger as the number of training im-
ages decreases. Since the architectures of these two meth-
ods are the same, the result indicates that our proposed self-

supervised learning is beneficial for capturing the robust
predicate representation.
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Category SePiR + Reweight DTrans + RTPB(CB)
Head 19.1 25.5
Body 19.2 23.2
Tail 20.3 17.2
All 19.7 20.9

Table 5. Comparison of mR@100 between SePiR and DTrans for
head, body, and tail sub-categories of predicate classes.

Comparison for each predicate. The result is shown in
Fig. 9–7 and Table 6. Clearly, SePiR outperforms DTrans
on tail categories with all the limited labeled dataset. The
result indicates that our self-supervised learning method
contributes to improving predicate representation including
tail categories.

B.3. More Ablation Study

In this section, we investigate three components of SePiR
that are not described in the paper: (1) self-supervised meth-
ods, (2) word embedding methods, and (3) object detectors.

Self-supervised methods. To select a loss function in
the self-supervised learning step, we pick up three self-
supervised learning methods: SimCLR [4], SimSiam [6],
and VICReg [1]. While SimCLR is the representative
method of contrastive learning methods, SimSiam and VI-
CReg are the representatives of non-contrastive methods.

To see only the effects of the above self-supervised learning
methods to the relational features, we do not utilize location
features and linguistic features for predicate classification.
We test on PredCls with the limited (5%, 10%, and 30%)
labeled dataset.

The result is shown in Fig. 10. In the case of 5% and
10%, there seems little difference among SimCLR, Sim-
Siam, and VICReg because the plots locate in similar trade-
off curves. For 30%, however, the performance of SimCLR
is better than the others. This is why we select SimCLR as
the self-supervised method in SePiR.

Word embedding methods. GloVe [15] is the most
widely used word embedding method in scene graph gen-
eration as linguistic feature. We investigate the validity
of GloVe by comparing to other word embedding meth-
ods: random vectors, FastText [2], Numberbatch [17],
and BERT [8]. To generate the random vectors, we
sample 300-dim embedding vectors from a standard nor-
mal distribution for each object label. As queries for
BERT, we construct a sentence with object labels of each
subject-object pair as [Subject label] is [MASK]
[Object label]. Then, BERT embedding is extracted
from i-th index of features of the last layer, where i corre-
sponds to the index of [MASK].

We investigate the influence of each word embedding
method on PredCls with Visual Genome. The result is
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labeled dataset.

SePiR + Reweight DTrans + RTPB(CB)
Category 5 10 30 5 10 30
Head 17.82 15.48 10.99 16.99 25.12 25.19
Body 17.09 21.09 20.72 1.82 5.18 11.94
Tail 3.99 8.63 13.17 0.13 1.23 2.78
All 11.32 14.82 16.04 3.20 6.23 9.76

Table 6. Comparison of mR@100 between SePiR and DTrans for head, body, and tail sub-categories of predicate classes with limited (5%,
10%, and 30%) labeled dataset.

shown in Fig 12. Actually, there are no big differences be-
tween word embedding methods. Hence, we select GloVe
as a linguistic feature in SePiR following conventional
scene graph generation methods. Rather, it is important
to denote that utilizing random vectors achieves a similar
performance to using the other word embedding methods,
and that it achieves slightly higher performance than Fast-
Text and Numberbatch. The result implies that a naive in-
troduction of word embedding cannot utilize information
more than discrete points of the object labels, and that in-
trinsic linguistic information that object labels contain are
not fully used.

Object detectors. In the paper, we adopt an attention-
based object detector to capture object-specific visual fea-

tures that are effective for the proposed augmentation. Since
object-specific visual features exclude unrelated informa-
tion (e.g. backgrounds or other objects) as much as possible,
the features are beneficial for predicate predictions. On the
other hand, the visual features extracted by the conventional
object detector based on a region-proposal network (RPN)
sometimes include this meaningless information because
they extract the visual features via bounding boxes. To en-
sure the advantage of the attention-based object detector, we
compare the visual features by the attention-based object
detector with those by the RPN-based object detector. We
select Conditional DETR [14] as an attention-object detec-
tor and Faster RCNN [16] as an RPN-based object detector.
Using the architectures of SePiR, we evaluate on PredCls
in a supervised manner and do not utilize location feature
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Figure 7. The comparison of Recall@100 for each predicate between SePiR+Reweight and DTrans+RTPB(CB) with limited (5%) labeled
dataset.
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Figure 8. The comparison of Recall@100 for each predicate between SePiR+Reweight and DTrans+RTPB(CB) with limited (10%) labeled
dataset.
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Figure 9. The comparison of Recall@100 for each predicate between SePiR+Reweight and DTrans+RTPB(CB) with limited (30%) labeled
dataset.
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Figure 10. The comparison of the performance on PredCls among three self-supervised methods with the limited (5%, 10%, and 30%)
labeled dataset.

and linguistic feature because these features depend on the
performances of the object detector.

The result is shown in Fig. 11. Clearly, Conditional

DETR achieves higher performance than Faster RCNN.
The result indicates that the object-specific visual features
has abilities to improve predicate predictions. More impor-
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Figure 11. The comparison of performance on PredCls between
visual features by Conditional DETR [14] and Faster RCNN [16]
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Figure 12. The comparison of the performance on PredCls using
five kinds of word embedding methods.

tantly, these visual features would be useful for preserving
predicates via augmentation in SePiR.
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