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1. Mathematical Calculus
1.1. Derivation of equation (5)

We assume the rotation to be given in Euler coordinates. An
explicit expression for the Wigner-D functions is given by:
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Hence, the Fourier sum reads as
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Rearranging the sums yields
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To get rid of the sum on the right, we follow [4] to transform
a linear combination of the dm,n

l ’s into a linear combination
of first kind Chebychev-polynomials which we call Tl. This
results in
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We choose the coefficients hm,n
l such that they fulfil
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if m+ n is odd. Together, we receive
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1.2. Derivation of equation (6)

It is possible to prove the equation not only for dimen-
sion 3 as we need it, but for arbitrary dimension d ∈ N. For
the ease of writing we define n = (n1, n2, n3) = (l,m, n)
and x = (α, β, γ). Instead of writing hm,n

l we write
hn1,n2,n3

= hn. Following [1] it the equation can be proved
via mathematical induction:

d = 1:
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where

a0 = h0, an = 2Re(hn), bn = −2Im(hn).
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Assumption of the induction:
We will assume that the equation holds for d − 1, where
d ≥ 2.
s
Induction step: d− 1 → d:
As the fourier series of any periodic and continous function
is absolutely convergent, we are allowed to rearrange the
sum in (∗) and receive
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Ind. asm.
==
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where

a′0 = h0,

a′n =

{
0 ∃j ∈ {3, . . . , d} : n2 = · · · = nj−1 = 0 ∧ nj < 0

2Re(hn) otherwise,

b′n =

{
0 ∃j ∈ {3, . . . , d} : n2 = · · · = nj−1 = 0 ∧ nj < 0

−2Im(hn) otherwise.

Combining these two summands we get∑
n∈N0×Zd−1

an cos(2πn · x) + bn sin(2πn · x),

where

a0 = h0,

an =

{
0 ∃j ∈ {2, . . . , d} : n1 = · · · = nj−1 = 0 ∧ nj < 0

2Re(hn) otherwise,

bn =

{
0 ∃j ∈ {2, . . . , d} : n1 = · · · = nj−1 = 0 ∧ nj < 0

−2Im(hn) otherwise.

2. Related work
In this section we want to discuss the approaches of other

works, that we compared to but were not discussed in the
paper.

2.1. Deng et al. [2]

In their work they introduce Deep Bingham networks,
a framework to handle pose ambiguities. They introduce
a multi hypotheses head to predict a family of poses to
capture the nature of the solution space. From a technical
perspective, they regress Bingham mixture models. Here,
the Bingham distribution lies on Sd−1 and is an antipodally
symmetric probability distribution derived from a Gaussian
with zero mean.

2.2. Gilitschenksi et al. [3]

To deal with the uncertainty of orientation they introduce
a loss to capture the symmetries by characterizing uncer-
tainty with unit quaternions based on the Bingham distri-
bution. They name their introduced loss ’Bingham loss’.
Furthermore, they demonstrate multimodal orientation pre-
diction by using a Bingham variant of mixture density net-
works.

2.3. Prokudin et al. [5]

They propose a probabilistic deep learning deep learning
model to predict a mixture of von Mises distributions. With
that they are able to to learn a mixture model using a finite
and infinite number of mixture components. Furthermore,
they give an analysis on the importance of probabilistic re-
gression.



Figure 1: Further results on daily life images from the Pascal Voc dataset.



(a) No marking on the object, therefore our model predicts a conti-
nous symmetry.

(b) Our model captures all 12 symmetries.

(c) The cube consists of 24 symmetries which we are able to capture. (d) The cylinder without marker has a continous symmetry.

(e) The red marker is visible on the cylinder. Hence, no symmetries
are present.

(f) The cylinder without a marker has a continuous symmetry.

Figure 2: Visualization of results on objects from the SYMSOL and SYMSOL II datasets.
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