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Transformer RL: 
a man sitting at a desk with a computer 
 
+wFT: 
a person sitting at a desk with multiple
computers

Transformer RL: 
a sheep laying on the grass in a field 
 
+wFT: 
an animal that is laying down on some
grass

Transformer RL: 
a living room with a couch and a table 
 
+wFT: 
a living room filled with white furniture
and red walls

Figure 1. Examples of the limitation of our methods. All the
examples are from the MS COCO validation set. The underlined
words are relatively low-frequency hypernyms.

1. Limitations and Ethical Considerations

Our experiments were limited to the MS COCO dataset,
which is the standard dataset for image captioning. The im-
ages belong to the general domain (real images of common
objects), and the captions are in English only. To compen-
sate for the limitation, we have demonstrated the effective-
ness of our methods with the multiple baseline models.

Our current methods have a limitation in that they cannot
select discriminative ones among low-frequency words. Al-
though discriminative in general, low-frequency words do
not always describe more specific information than others.
Figure 1 shows the examples. Our model output relatively
low-frequency hypernyms such as person, animal, and fur-

niture instead of the more frequent but more specific hy-
ponyms: man, sheep, and couch. Utilizing thesauruses like
WordNet [4] will be a promising approach to reduce those
relatively low-frequency hypernyms from outputs.

The dataset contains social biases, and captioning mod-
els have the risk of amplifying those biases [24, 25, 6]. Our
methods are also not free from the risk, as they are not de-
signed to reduce those social biases from existing models.

2. Further Output Examples
Figure 2 shows caption examples in the MS COCO val-

idation set. The blue words are those that have never ap-
peared in the output captions of the baseline model. We ob-
serve that these blue words express various types of charac-
teristic information of the images. Here, weather vane and
flamingos are characteristic objects of the images (a) and
(b); shallow, funny, and staring straight ahead are charac-
teristic attributes of the images (b) and (c); and racing and
sniffing are characteristic relations in the images (d) and (e).
These examples further support our hypothesis that the lim-
ited vocabulary of RL models hinders discriminativeness.

3. Peaky Distributions in Other Models
Figure 3 shows the results of the relative frequency of the

words sampled for the training images by the LSTM-based
models: Att2in [18] and UpDown [1]. Similar to the Trans-
former model, the sequences sampled with the LSTM-based
RL models are clearly limited to high-frequency words,
forming the peaky distributions.

4. Libraries for Evaluation
We used the following libraries for evaluation with all

the hyperparameters set to the default values.
CIDEr, SPICE, CLIPS, and RefCLIPS https://gi
thub.com/jmhessel/pycocoevalcap
BERTS+ https://github.com/ck0123/improv
ed-bertscore-for-image-captioning-eval



Transformer RL: a group of birds standing
in the water 
+wFT: a large group of flamingos stand in
shallow water 
NLI: a group of pink umbrellas are standing
in the water 
Human: a flock of pink flamingos standing
in shallow water

Transformer RL: a tower with a clock on
top of it 
+wFT: a clock tower with a weather vane
on top 
NLI: a tower with a clock on the top of it 
Human: a weather vane atop a cathedral
clock tower

Transformer RL: a black cat wearing a hat
on top of a table 
+wFT: a cat wears a funny hat while
staring straight ahead 
NLI: a black cat wearing a hat sitting on a
table 
Human: the cute black cat is wearing a
bee's hat

Transformer RL: a group of people riding
motorcycles on a road 
+wFT: a group of people racing
motorcycles on a race track 
NLI: a group of people riding motorcycles
on a race track 
Human: people are racing motorcycles on
a race track

Transformer RL: a dog next to a cup of
coffee 
+wFT: a dog is sniffing a cup of coffee 
NLI: a dog standing next to a coffee cup on
a table 
Human: a squinting dog on a brick patio
sniffs a cup of coffee

(a)

(b)

(c)

(d)

(e)

Figure 2. Caption examples in the MS COCO validation set. The
blue words are those that have never appeared in the output cap-
tions of the baseline model (Transformer RL). Human shows a
ground-truth caption of each image.

uation
TIGEr https://github.com/SeleenaJM/CapEv
al
R@K https://github.com/fartashf/vsep
p; following [12], we used a publicly available model,
coco vse++ resnet restval finetune.

5. Best Hyperparameters

We searched for the best hyperparameters for the learn-
ing rate from {1e-3, 1e-4, 1e-5, 1e-6}, and the inverse-
temperature hyperparameter β′ of Eq. (7) from {0.1, 1}.
The best learning rate was 1e-5 for Transformer models and
1e-4 for the other models (Att2in and UpDown). The best
β′ was 0.1 for wFT with pθ decoding and 1 for wFT with
BP decoding. Note that sFT does not use β′.

Figure 3. Relative frequency of the words in the sequences sam-
pled for the training images. Five sequences were sampled for
each image. The words (9,486 unique words excluding an out-of-
vocabulary token ⟨unk⟩) are sorted by their frequency in ground-
truth captions and divided into 200 bins. We show the first 10 bins
and the sum of the rest. GT is the ground-truth caption of the train-
ing images, CE is the output of a captioning model trained with the
CE loss, and RL is the output of a captioning model trained with
RL.

The best learning rate was the same in CE-based models
(Joint CE and Only CE): 1e-5 for Transformer and 1e-4 for
the others. The best λ ∈ {0.2, 0.5, 0.8} for Joint CE was
0.8 for Transformer and 0.2 for the others.

6. The Number of Parameters

The exact number of parameters was 14,451,985 for
Att2in, 52,125,025 for UpDown, and 57,474,832 for Trans-
former. Note that the parameters θ′ are not included because
they are not trainable and fixed through the entire training
and evaluation; rather, the actual trainable parameters are
decreased to the classifier parameters in our models. Visual
Paraphrase has double decoders of Att2in; thus, it increases



Epoch Batch Hour/Epoch Total Hour

Att2in RL 20 10 0.68 13.54
+ sFT 1 10 0.08 0.08
+ wFT 1 10 0.12 0.12

CIDErBtw 50 10 0.70 35.11
NLI 50 16 0.87 43.55
Joint CE 20 10 1.15 22.97

UpDown RL 20 10 0.71 14.16
+ sFT 1 10 0.09 0.09
+ wFT 1 10 0.14 0.14

CIDErBtw 50 10 0.76 38.09
NLI 50 16 0.87 43.74
Joint CE 20 10 1.08 21.67

Transformer RL 25 10 3.23 80.66
+ sFT 1 10 0.11 0.11
+ wFT 1 10 0.18 0.18

CIDErBtw 25 10 3.27 81.76
NLI 25 16 2.74 68.54
Joint CE 25 10 4.06 101.43

Table 1. Time to train discriminativeness-aware captioning mod-
els. Note that we excluded the time for initialization before RL
because there is not much difference among the methods. Results
for the baseline RL models are shown in gray text because we
did not train these models but used publicly-available pre-trained
models.

the number of trainable parameters and requires training of
the specialized model from scratch.

7. Comparison of Computational Cost
Table 1 shows the time to train discriminativeness-aware

captioning models. We used a single GPU of 16 GB mem-
ory for all training. Clearly, our methods require far less
time for training. This is because our methods do not re-
quire retraining from scratch but only require a single-epoch
fine-tuning to publicly-available pre-trained RL models.

8. Qualitative Analysis of Underrated Captions
Figure 4 shows caption examples, automatic evaluation

scores, and reference captions. Clearly, our wFT model
correctly described all five images with diverse vocabulary.
However, the CIDEr scores for our captions were consider-
ably lower than those for the baseline model captions. The
cause of this underrating is the small coverage of the refer-
ence captions: the reference captions rarely include the low-
frequency words colored in blue due to their low frequency.
Conventional exact-matching metrics such as CIDEr cannot
evaluate those correct-but-OOR words by the definition of
exact-matching. In contrast, RefCLIPS, the state-of-the-art
soft-matching metric, can consider the information not cov-
ered by reference captions by incorporating image features.
Figure 4 shows that RefCLIPS evaluated the correct-but-
OOR words more correctly and gave more plausible scores
to our captions. These examples further support our conclu-
sion that the lower exact-matching scores of our models are

Transformer RL: 
a person flying a kite in the ocean 
        [CIDEr: 60.2, RefCLIPS: 79.8] 
+wFT: 
a man kiteboarding on top of a body of water 
        [CIDEr: 3.5, RefCLIPS: 79.2] 
Reference Coverage: 0/5 
N/A 

Transformer RL:  
a dog laying on top of a couch 
        [CIDEr: 133.3, RefCLIPS: 77.7] 

+wFT: 
a dog curled up asleep on a cushion 
        [CIDEr: 38.7, RefCLIPS: 79.2] 
Reference Coverage: 0/5 
N/A

Transformer RL: 
a vase filled with yellow flowers on a table 
        [CIDEr: 216.7, RefCLIPS: 78.5] 
+wFT: 
a clear vase filled with multi colored flowers 
        [CIDEr: 94.0, RefCLIPS: 82.0] 
Reference Coverage: 1/5 
an arrangement of flowers in a clear glass
canning jar haging on a wall

Transformer RL: 
a yellow and blue airplane sitting on a runway 
        [CIDEr: 104.1, RefCLIPS: 78.2] 
+wFT: 
a yellow and blue jet airliner on a runway 
        [CIDEr: 58.8, RefCLIPS: 78.3] 
Reference Coverage: 1/5 
a brown lot airliner sitting on the tarmac

Transformer RL: 
a herd of cows grazing in a field of grass 
        [CIDEr: 172.2, RefCLIPS: 81.6] 
+wFT: 
a herd of cattle grazing on a dry grass field 
        [CIDEr: 74.0, RefCLIPS: 84.4] 
Reference Coverage: 2/5 
a bunch of cows grazing in a dry field together 
cows wandering in a dry grass filled meadow

Figure 4. Underrated captions in the MS COCO validation set.
The blue words are those that have never appeared in the output
captions of the baseline model (Transformer RL). Reference Cov-
erage shows the number of reference captions (out of five) that
cover at least one of the blue words.

caused by the nature of low-frequency words and the defi-
ciency of exact-matching metrics, not by the degeneration
of our models.

9. Details of Human Evaluation
We show our AMT interface in Figure 5. Each image

was evaluated with the five questions in the discrete 5-point
scale. We required workers to satisfy the following qualifi-
cations: being an AMT Master and living in the U.S. Work-
ers were notified that this experiment was intended to eval-
uate caption quality. We paid $0.1 for each image, and the
median of the actual working time was 41 seconds per im-
age. The hourly reward was estimated as $8.78, which is



Figure 5. A screenshot of our AMT interface.

higher than the minimum wage in the U.S., $7.25 per hour.

10. Comparison with Other Long-Tail Classifi-
cation Methods

We adapted the long-tail classification method of [9] to
relieve the bottleneck of RL and proposed sFT and wFT.
Both methods were carefully designed for RL models, but
these were not the only way to employ long-tail classifica-
tion methods. In this section, we discuss the other possible
adaptations based on [17].

[17] explored ways to employ long-tail classification
methods for machine translation. Their first method was τ -
normalization (τ -norm), which directly adopted the method
of [9]. Based on an observation that the norm of classifier
parameters correlates with the frequency of the classes, they

normalized the classifier weight W as follows:

W̃wi
=

Wwi

∥Wwi
∥τ

, (1)

where Wwi ∈ Rd indicates a vector at the index of a word
wi and τ is a temperature hyperparameter that controls the
degree of the normalization.

The other methods of [17] were Focal loss (FL) and Anti-
Focal loss (AFL). AFL is a variant of FL [11], which was
aimed at reweighting the loss according to the confidence of
the model predictions. Let ptθ = pθ(w

g
t | wg

<t, I). FL and
AFL in image captioning are then written as follows:

LFL(θ) = − 1

T

T∑
t=1

(1− ptθ)
γ log ptθ, (2)

LAFL(θ) = − 1

T

T∑
t=1

(1 + αptθ)
γ log ptθ, (3)

where γ and α are hyperparamters that control the degree
of the reweighting. Other work also explored ways to em-
ploy long-tail classification methods for text generation, but
those approaches are categorized as either τ -norm [14] or
variants of FL [5, 8, 22], which we already explored above.

We compared our methods (sFT and wFT) with τ -norm,
FL, and AFL. In our experiments, we normalized the bias
term b1 in addition to the weight term W as we found it per-
formed better than normalizing the weight term only. We
applied FL and AFL as the alternative weighting to BP for
a fair comparison with our methods. That is, we fine-tuned
the classifier parameters by optimizing LFL(θ̂) or LAFL(θ̂),
where θ̂ were initialized with the pre-trained RL models.
We used the best hyperparameters reported in [17]: τ = 0.2,
γ = 1, and α = 1. Similar to our models, other hyperpa-
rameters were set to the same values as the baseline models,
except for the epoch size and learning rate. We explored
the same values for these hyperparameters as our models:
we set the epoch size for fine-tuning to 1 and searched for
the best learning rates from {1e-3, 1e-4, 1e-5, 1e-6}. We se-
lected the best learning rate according to the R@1 scores
in the validation set. The best learning rate was 1e-4 for
Att2in RL + FL/AFL, 1e-4 for UpDown RL + FL/AFL, and
1e-5 for Transformer RL + FL/AFL. Note that we did not
explore the learning rate for τ -norm because it does not re-
quire training.

In open-ended text generation tasks, e.g., story genera-
tion and text generation after prompts, stochastic sampling
methods are used instead of beam search to increase the di-
versity in output text [7, 2, 13]. Although image captioning
does not fall in the category of open-ended text generation

1b̃ = b
∥b∥τ , where the value of the hyperparameter τ was set to the

same as that of W̃ .



Vocabulary Standard Evaluation Discriminativeness

Unique-1 Unique-S Length CIDEr SPICE BERTS+ TIGEr CLIPS RefCLIPS R@1 R@5 R@10

Att2in RL 445 2,524 9.3 117.4 20.5 43.6 73.9 73.0 79.7 16.3 41.9 57.2
+ sFT 880 3,156 9.0 115.4 20.4 43.9 74.3 73.7 80.3 20.1 48.0 62.8
+ wFT 1,197 3,732 8.9 104.3 19.5 43.1 74.2 73.9 80.2 20.6 49.7 64.5
+ wFT (BP decoding) 1,102 3,615 9.4 109.3 20.1 43.7 74.4 74.0 80.2 21.1 50.5 64.8
+ τ -norm 437 2,414 9.1 117.3 20.4 43.5 73.8 72.9 79.7 15.4 40.7 55.8
+ FL 903 3,217 9.0 114.8 20.4 43.8 74.3 73.7 80.3 20.1 48.1 63.2
+ AFL 886 3,116 9.0 115.3 20.4 43.8 74.3 73.7 80.3 19.7 47.6 62.7
+ Nucleus sampling 475 2,726 9.3 116.5 20.3 43.5 73.9 72.9 79.7 16.5 41.9 57.1

UpDown RL 577 3,103 9.5 122.7 21.5 44.2 74.6 74.0 80.5 21.1 49.9 64.6
+ sFT 1,190 3,788 9.2 115.9 21.0 44.2 74.9 74.8 80.9 25.0 56.8 71.2
+ wFT 1,479 4,268 9.1 101.8 19.5 43.1 74.6 74.9 80.7 26.0 57.6 72.2
+ wFT (BP decoding) 1,275 4,177 9.6 110.0 20.6 44.1 74.9 75.0 80.8 26.7 58.7 72.4
+ τ -norm 576 2,967 9.3 122.6 21.3 44.2 74.4 73.8 80.5 19.6 48.1 63.4
+ FL 1,201 3,830 9.2 114.9 20.9 44.1 74.9 74.7 80.9 25.2 57.0 70.9
+ AFL 1,171 3,760 9.2 116.4 20.9 44.2 74.9 74.7 80.9 24.9 56.6 70.7
+ Nucleus sampling 592 3,339 9.5 120.7 21.3 44.2 74.6 73.9 80.4 20.9 49.7 64.4

Transformer RL 753 3,433 9.2 127.7 22.5 45.1 75.0 75.0 81.3 26.6 56.2 70.5
+ sFT 1,458 3,959 9.1 118.7 21.7 44.8 75.2 75.6 81.5 30.6 62.3 75.7
+ wFT 1,776 4,274 9.1 103.1 20.0 43.3 74.8 75.8 81.2 32.5 64.5 77.1
+ wFT (BP decoding) 1,964 4,373 9.4 107.2 21.1 44.2 75.2 76.1 81.5 33.5 65.9 78.2
+ τ -norm 1,027 3,483 9.2 124.4 22.1 44.9 74.8 74.9 81.2 26.1 55.8 69.7
+ FL 1,523 4,018 9.1 116.5 21.4 44.6 75.2 75.7 81.5 31.2 63.1 76.3
+ AFL 1,402 3,908 9.1 120.5 21.9 44.8 75.2 75.6 81.6 30.0 62.1 75.9
+ Nucleus sampling 1,053 3,751 9.3 123.7 22.0 44.8 74.9 75.0 81.2 26.9 55.8 70.4

Table 2. Comparison with the other long-tail classification methods. Automatic evaluation results on the MS COCO test set. Unique-1
and Unique-S indicate the number of unique unigrams and sentences, respectively. Length is the average length of output captions.

as input images tightly scope the correctness of captions, we
additionally test whether the randomness in stochastic sam-
pling can increase the output vocabulary. We used Nucleus
sampling [7] with a hyperparameter p = 0.95, which is the
best hyperparameter reported [7, 13].

Table 2 shows the results. τ -norm and Nucleus sam-
pling showed the similar results. Both methods slightly
increased the output vocabulary but the performance gen-
erally remained the same as the baseline models. These
results indicate that the output vocabulary cannot be signif-
icantly increased while maintaining the relative probability
of words: Nucleus sampling samples according to the origi-
nal output distributions and τ -norm changes the distribution
only by the difference in the norm, basically flattening the
distribution. In contrast, FL and AFL drastically change the
relative probability of words by refining the mapping from
encoded features to low-frequency words, as with sFT and
wFT. They successfully increased the vocabulary size and
discriminativeness. However, the gains were smaller than
those of wFT.

To analyze the cause of the difference between FL, AFL,
and the BP loss (wFT), we visualized the losses in Figure 6.
FL suppresses the loss when a model is confident, whereas
AFL increases the loss when a model is moderately con-
fident. Compared with these losses, BP changes the loss
more drastically. When the frequency-biased policy pθ′ is
highly confident, BP strictly suppresses the loss to prevent
further learning on that word; when pθ′ is not confident, BP
highly increases the loss to encourage the learning on that
word. This drastic rebalancing of the loss resulted in wFT’s

Figure 6. Visualization of the losses: CE − log pθ(wi), BP
− log pθ,θ′(wi), FL (1 − pθ(wi))

γ log pθ(wi), and AFL (1 +
αpθ(wi))

γ log pθ(wi). We set β = β′ = 1, γ = 1, and α = 1.

larger vocabulary size and higher discriminativeness.

11. Validation Performance for Reproduction

Table 3 shows the performance of our models on the
MS COCO validation set. We report these results for the
future reproduction of our experiments. The code will be
made available at https://github.com/ukyh/sw
itch disc caption.git.



Vocabulary Standard Evaluation Discriminativeness

Unique-1 Unique-S Length CIDEr SPICE BERTS+ TIGEr CLIPS RefCLIPS R@1 R@5 R@10

Att2in RL 435 2,583 9.3 116.5 20.3 43.6 N/A 73.1 79.8 16.2 42.5 57.0
+ sFT 874 3,189 9.0 113.7 20.1 43.7 N/A 73.9 80.3 19.2 47.9 62.9
+ wFT 1,196 3,792 9.0 104.8 19.3 43.2 N/A 74.2 80.3 19.6 50.4 64.6
+ wFT (BP decoding) 1,105 3,633 9.4 108.6 20.0 43.7 N/A 74.1 80.3 20.6 50.6 64.9

UpDown RL 563 3,161 9.5 122.3 21.3 44.2 N/A 74.2 80.6 20.6 50.2 65.7
+ sFT 1,222 3,805 9.2 115.3 20.7 44.1 N/A 74.9 80.9 24.6 56.2 70.9
+ wFT 1,502 4,301 9.1 100.4 19.2 43.0 N/A 75.0 80.7 26.1 57.4 71.4
+ wFT (BP decoding) 1,278 4,226 9.6 108.9 20.5 43.9 N/A 75.1 80.9 26.4 58.6 73.6

Transformer RL 713 3,432 9.2 126.4 22.1 45.0 N/A 75.0 81.2 25.4 56.3 69.8
+ sFT 1,496 3,953 9.1 118.4 21.4 44.6 N/A 75.7 81.5 30.2 62.7 75.8
+ wFT 1,836 4,268 9.1 102.2 19.8 43.2 N/A 75.9 81.3 32.2 64.3 76.8
+ wFT (BP decoding) 2,004 4,392 9.4 105.6 20.6 43.9 N/A 76.1 81.4 32.8 66.1 79.0

Table 3. Automatic evaluation results on the MS COCO validation set. Unique-1 and Unique-S indicate the number of unique unigrams
and sentences, respectively. Length is the average length of output captions. TIGEr scores are N/A as the TIGEr evaluation tool currently
does not support evaluation on the MS COCO validation set.

Vocabulary Standard Evaluation Discriminativeness

Unique-1 Unique-S Length CIDEr SPICE BERTS+ TIGEr CLIPS RefCLIPS R@1 R@5 R@10

VinVL RL 1,126 4,298 10.0 140.9 25.2 46.1 75.7 77.6 83.3 36.1 68.5 80.2
+ sFT 1,834 4,649 10.0 126.0 23.8 45.5 75.6 78.2 83.3 39.2 72.1 83.8
+ wFT 1,852 4,652 10.0 124.9 23.7 45.5 75.6 78.2 83.3 39.2 72.0 83.9
+ wFT (BP decoding) 1,734 4,717 9.8 122.4 23.5 45.2 75.7 78.2 83.3 39.6 72.1 84.6

Table 4. Test on the more recent captioning model. Automatic evaluation results on the MS COCO test set. Unique-1 and Unique-S
indicate the number of unique unigrams and sentences, respectively. Length is the average length of output captions.

12. Effectiveness on More Recent Models

To further demonstrate the effectiveness of our methods,
we tested our fine-tuning methods on a more recent caption-
ing model, VinVL [23, 10]. VinVL boosts its performance
through large-scale cross-modal pre-training. The signifi-
cant performance improvements have made VinVL a popu-
lar captioning model and one of the most advanced caption-
ing models available today [20, 21, 15].

We used the best-performing pre-trained model as our
baseline: coco captioning large scst model that
is publicly available at https://github.com/micro
soft/Oscar/blob/master/VinVL MODEL ZOO
.md#Image-Captioning-on-COCO. Note that this
model was trained with the standard RL [18].

As in the previous experiments, we applied our fine-
tuning methods for one epoch only. We searched for the
best learning rates for fine-tuning from {1e-5, 1e-6}, and
the inverse-temperature hyperparameter β′ of Eq. (7) from
{0.01, 0.1, 1}. Other hyperparameters were set to the same
as the baseline model. The best learning rate was 1e-5. The
best β′ was 0.01 for wFT with pθ decoding and 1 for wFT
with BP decoding. Note that sFT does not use β′.

Table 4 shows similar results as Table 1 in the main
paper. Our methods significantly increased the vocab-
ulary size from the baseline and accordingly enhanced
the discriminativeness. The standard evaluation metrics
also showed the same tendency. Although our mod-
els scored lower than the baseline in the conventional
exact-matching metrics (CIDEr and SPICE), the gap be-

came smaller in the more advanced soft-matching metrics
(BERTS+ and TIGEr). In the state-of-the-art soft-matching
metrics (CLIPS and RefCLIPS), our models achieved the
same or even higher scores than the baseline. These re-
sults show that our methods are also effective on the more
recent model. Moreover, these results further validate
that our methods can switch any off-the-shelf RL models
to discriminativeness-aware models while maintaining the
overall quality of captions.

13. Comparison and Combination with More
Recent Discriminativeness-Aware Models

Contemporaneous to our work, [3] showed that maxi-
mizing CLIPS-based reward enhanced discriminativeness
significantly. In this section, we clarify the advantages of
our methods over the CLIPS-based RL by comparing and
combining our methods with it.

The pre-trained models of [3] are publicly available at
https://github.com/j-min/CLIP-Captio
n-Reward. We used the transformer model trained with
the standard CIDEr reward (Transformer* RL (CIDEr);
clipRN50 cider) and the one trained with the reward
proposed by [3] (Transformer* RL (CLIPS + Grammar);
clipRN50 clips grammar)2. The proposed reward is
computed by the weighted sum of CLIPS and grammatical-
ity scores.

2Note that clipRN50 does not mean that the model used the CLIPS-
based reward. It denotes that the model used CLIP [16] as the image en-
coder, unlike the other models tested in this paper.



Vocabulary Standard Evaluation Discriminativeness

Unique-1 Unique-S Length CIDEr SPICE BERTS+ TIGEr CLIPS RefCLIPS R@1 R@5 R@10

Transformer* RL (CIDEr) 691 3,650 9.5 126.0 22.8 45.2 74.6 75.8 81.6 27.1 57.2 70.6
+ sFT 1,265 4,071 9.1 122.9 22.2 45.2 74.8 76.4 82.0 31.4 62.0 75.0
+ wFT 1,546 4,337 9.0 111.3 21.0 44.2 74.5 76.5 81.8 31.6 63.3 75.7
+ wFT (BP decoding) 1,543 4,471 9.5 112.3 21.7 44.9 74.8 76.9 81.9 34.0 65.4 78.4

Transformer* RL (CLIPS + Grammar) 952 4,847 13.0 74.1 19.8 43.6 75.0 79.2 81.2 44.2 77.0 86.9
+ sFT 969 4,848 12.8 76.4 20.1 43.8 75.0 79.2 81.2 44.6 77.3 87.0
+ wFT 969 4,847 12.9 76.4 20.1 43.8 75.0 79.2 81.2 44.8 77.2 87.1
+ wFT (BP decoding) 1,001 4,853 12.2 82.5 20.6 44.1 75.0 79.2 81.3 45.5 77.2 87.1

Table 5. Test on the more recent discriminativeness-aware model. Transformer* used a different image encoder than the other transformer
models tested in this paper. Automatic evaluation results on the MS COCO test set. Unique-1 and Unique-S indicate the number of unique
unigrams and sentences, respectively. Length is the average length of output captions.

As in the previous experiments, we applied our fine-
tuning methods for one epoch only. We searched for the best
learning rates for fine-tuning from {1e-5, 1e-6, 1e-7}, and
the inverse-temperature hyperparameter β′ of Eq. (7) from
{0.01, 0.1, 1}. Other hyperparameters were set to the same
as the baseline model. The best learning rate for Trans-
former* RL (CIDEr) was 1e-5; the best β′ was 0.1 for wFT
with pθ decoding and 1 for wFT with BP decoding. The
best learning rates for Transformer* RL (CLIPS + Gram-
mar) were 1e-6 for wFT with BP decoding and 1e-7 for the
others; the best β′ was 1 for wFT with both decoding meth-
ods. Note that sFT does not use β′.

Table 5 shows the results. Similar to the previous results,
our methods significantly enhanced the vocabulary size and
discriminativeness from the RL models while maintaining
or even increasing the scores in the state-of-the-art soft-
matching metrics. The CLIPS + Grammar reward also
achieved the high discriminativeness compared with the
standard CIDEr reward.

However, the improvement of the CLIPS-based RL came
at the expense of the conciseness and overall quality of cap-
tions in contrast to our methods: compared to Transformer*
RL (CIDEr), Transformer* RL (CLIPS + Grammar) signif-
icantly increased the sentence length and decreased scores
in the standard evaluation metrics, including the state-of-
the-art metric, RefCLIPS. Although increasing the sentence
length is one way to describe images in detail, concise de-
scription is more desirable to convey the most characteristic
information clearly and efficiently [19].

These results indicate that our methods and the CLIPS-
based RL increased discriminativeness by different factors:
more specific vocabulary and longer descriptions, respec-
tively. In other words, the contribution of our methods is
orthogonal to that of the CLIPS-based RL. To utilize the
strength of each, we applied our methods to the CLIPS-
based RL model. Although the CLIPS-based RL achieved
the high discriminativeness and relatively large vocabulary
size due to the longer sentences, our methods further en-
hanced the discriminativeness and vocabulary size. Sur-
prisingly, our methods also improved the standard evalua-
tion scores, including exact matching scores. This result

suggests that our fine-tuning with ground-truth captions re-
stored the overall quality of captions, which was degraded
by over-optimization for CLIPS.

Another critical advantage of our methods is computa-
tional efficiency. Training of CLIPS-based RL took one day
using eight GPUs [3], while ours only took 40 minutes us-
ing a single GPU.

The above results conclude that our methods are orthog-
onal to the more recent discriminative image captioning
method and have important advantages in conciseness and
efficiency.
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