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A. Additional Experimental Details

We describe the general setup of the COCO-Body model

here and state specific changes to DeepFashion in Sec. A.3.

All experiments were performed with Pytorch v1.11 [22]

with 2x Tesla V100-32GB GPUs. FID and PPL is computed

with torch fidelity [20], where we modify the code to sup-

port conditional image synthesis.

I. Network Architecture and Hyperparameters

We use equalized learning rate [8] for all trainable pa-

rameters and use the Adam [12] optimizer with batch

size=32, learning rate=0.001, β1 = 0.0, β2 = 0.99 and

ϵ = 10−8. Note that we set the learning rate to 0.002 for

Config E. Each model is trained until the discriminator has

seen 12M images. All networks are trained with mixed pre-

cision using the implementation provided by Pytorch [22].

Generator Architecture The generator architecture is

a U-Net architecture [24] following design principles

of StyleGAN2 [11]. There are 5 residual blocks in

the encoder and 5 in the decoder, where each block

has two 3x3 convolutions. The residual blocks has

the following number of output channels (Config E):

[128, 256, 512, 512, 512, 512, 512, 256, 128, 64]. Convolu-

tions of the same block has the same number of out-

put channels. For other configs, we straightforward scale

down the reported output channels to match the number

of parameters reported in the main paper. Bilinear upsam-

pling/downsampling is performed after each block (except

the end/start of the encoder/decoder). We use 1× 1 residual

skip connections between the first 4 and last 4 blocks of the

encoder/decoder. Each convolution in the residual blocks

(except reisdual/u-net skip connections) has the following

order of operations; SAM feature modulation → convolu-

tion → LeakyReLU (slope=.2) [17] → normalization.

The input image resolution is 288 × 160 and the min-

imum feature map resolution is 36 × 20. For inference,

we use the exponential moving average [28] of the gener-

ator, where we use β = 0.9977. For all models (except

those with V-SAM, INADE [25], Co-mod [30] or Style-

GAN [11]), we linearly project the latent variable to a

1× 32× 32, then add it to the output of the encoder.

FPN-Discriminator The FPN-discriminator consists of 6

residual blocks, with the following number of output chan-

nels (Config E) for each: [128, 256, 512, 512, 512, 512],
which results in 34M parameters. For the FPN-Head, we

add a 1 × 1 convolution that linearly transforms the output

of each residual block to the number of output channels (16

for CSE embedding, 26 for semantic segmentation). These

feature maps are then bilinearly upsampled and added.

Loss function We use the non-saturating adversarial loss

[3] and regularize the discriminator with epsilon penalty [8]

and r1-regularization [18]. We mask the r1-regularization

by M , similar to [29, 7], and apply it every 16th gradient

step (known as ”lazy regularization” [11]). The total loss is

given by

L = LGAN + λEP · LEP + λGP · LGP + λCSELCSE

(1)
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Table 1: All quantitative metrics for every model in the main paper, where the leftmost column specify which table each

model corresponds to. Note that some models are repeated in the table between different comparisons. Number of layers in

the mapping network (n) is 6 if not stated otherwise.

Main Metrics Face Metric PSNR Affine Transformation

Model LPIPS ↓ LPIPS Diversity ↑ FID ↓ PPL ↓ FID ↓ Translation ↑ Hflip ↑ Rotation ↑

T
ab

le
1

A (Baseline) 0.237 0.162 7.4 26.7 13.4 22.0 20.4 19.3

B (A+ CSE Supervision) 0.220 0.140 5.8 19.0 9.1 23.1 21.7 20.3

C, SAM 0.219 0.143 5.6 19.2 7.4 23.8 21.4 20.7

D, V-SAM 0.220 0.166 5.2 13.7 7.4 26.1 22.5 21.4

E, Larger D/G 0.211 0.161 4.8 15.1 6.8 26.2 22.1 21.0

T
ab

le
2

D, V-SAM n=0 0.221 0.155 5.4 24.9 7.7 25.9 22.0 21.1

D, V-SAM n=2 0.221 0.164 5.4 19.7 8.0 26.1 21.9 21.3

D, V-SAM n=4 0.221 0.161 5.5 19.8 7.9 26.0 22.0 21.1

D, V-SAM n=6 0.220 0.166 5.2 13.7 7.4 26.1 22.5 21.4

T
ab

le
3

B + SPADE [21] 0.223 0.150 5.9 20.6 9.7 22.5 20.7 19.8

B + CLADE [26] 0.221 0.138 5.7 16.9 8.9 22.9 21.3 20.1

B + INADE [25] 0.223 0.140 5.8 19.5 9.4 24.1 20.9 20.2

B + StyleGAN [11] 0.220 0.155 5.7 48.2 9.4 25.5 21.6 20.9

B + CoMod 0.221 0.154 5.5 17.9 17.5 24.5 21.6 20.6

where λEP = 0.001, λGP = 5, and λCSE = 0.1. λEP is

identical to Progressive Growing GAN [8]. λGP and λCSE

are determined by a rough hyperparameter search, where

we tested λCSE ∈ [.1, .2, .5, 1, 2, 5, 10, 50] and λGP ∈

[0.1, 0.5, 5, 10, 20, 100]. We did the hyperparameter search

only on Config B. No other hyperparameter search is done,

unless stated otherwise.

Data Augmentation We use a limited amount of data

augmentation, but find that it significantly improves quality

of generated samples. We adapt the augmentation pipeline

of StyleGAN2-ada [9] and modify the Pytorch implemen-

tation to support conditional image synthesis. The pipeline

includes general geometrical transformations, color trans-

formations, rotation, and horizontal flip. We significantly

limit the amount of augmentation done, e.g. we rotate

by a maximum of 9◦ left/right and translate by a maxi-

mum of 5% of the image width/height. This is to pre-

vent augmentations leaking to our generator as we do not

use adaptive augmentation training [9]. Following the

Pytorch implementation, we use the following parame-

ters; rotate=0.5, rotate max=.05, xint=.5, xint max=0.05,

scale=.5, scale std=.05, aniso=0.5, aniso std=.05, xfrac=.5,

xfrac std=.05, brightness=.5, brightness std=.05, con-

trast=.5, contrast std=.1, hue=.5, hue max=.05, satura-

tion=.5, saturation std=.5, imgfilter=.5, imgfilter std=.1.

II. Face Quantitative Evaluation

The quantitative evaluation of the face region was done

by cropping the face region, upsampling the region to

(299, 299) and compute FID for every training sample in

the dataset. The face region was detected with DSFD [14]

using an open source Pytorch implementation [6] where the

highest scoring and largest face region was extracted.

III. DeepFashion CSE­Dataset

The DeepFashion CSE-dataset is derived from the In-

shop Clothes Retrieval Benchmark of DeepFashion [16],

where we have annotated each image with a CSE embed-

ding. Each image is automatically annotated with a pre-

trained model from detectron2 [27], specifically R-101-

FPN-DL-s1x. For each image, we select the highest scoring

detected instance. We remove any image that has no detec-

tions with a confidence score larger than 0.8. The filtered

dataset results in 40,625 training images and 10,275 valida-

tion images, where each image is downsampled to 384×256
using bilinear sampling. We will include the train/val split

that we randomly selected.

DeepFashion Decoder-Only Architecture The decoder-

only generator is similar to the generator of StyleGAN2

[11]. The generator consists of 6 residual blocks with two

3×3 convolutions each, where each block is followed by bi-

linear upsampling. In total, the generator has 43.5 M param-

eters, where each residual block has the following number

of output channels: [768, 768, 384, 192, 96, 48]. The start-

ing resolution is 12× 8 and the output is 384× 256.

We use the same discriminator as for COCO-Body, ex-

cept that we scale the number of parameters to 42.4M. Oth-

erwise, we use identical hyperparameters as for the COCO-

Body dataset.

https://github.com/NVlabs/stylegan2-ada-pytorch/blob/6f160b3d22b8b178ebe533a50d4d5e63aedba21d/training/augment.py#L117
https://github.com/facebookresearch/detectron2/blob/main/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml
https://github.com/facebookresearch/detectron2/blob/main/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml


B. COCO Anonymization Details

The anonymization framework consists of two stages,

detection and generation.

The detection network is a pre-trained CSE [19] network
1 from detectron2 [27]. We detect pixel-to-surface corre-

spondences on the entire image (can contain several iden-

tities), then crop every person out. For each instance de-

tected, we crop by first finding the minimum bounding box

that contains the detected surface, then expand this surface

to a rectangular shape that has a similar aspect ratio of the

target resolution (288 × 160). In addition, we ensure that

30% of the resulting crop contains ”background” (i.e. not

the surface). We zero-pad the image if there is no possible

crop that fits in the original image.

We crop the CSE-embedding similarly. The cropped im-

age and the embedding is then resampled to 288× 160 with

bilinear up/downsampling. The segmentation map S out-

putted by CSE is 1 for every pixel belonging to the surface.

We equally resample S and dilate S depending on the num-

ber of pixels in the image that belongs to the surface. This is

to ensure that we remove clothing and other accessories on

the human body, as CSE primarily detects the body. Then,

we zero-out all pixels that are belongs to the surface, indi-

cated by the dilated segmentation S. The resulting partial

image is the input of our surface-guided generator.

The final image is naively stitched together. For each

instance, the generated image is resampled to the original

resolution, then all pixels in the original image belonging to

the dilated surface is replaced by with the generated ones.

I. COCO­Body Dataset

We generate the COCO-Body dataset by using the detec-

tion procedure described above on COCO [15] train2014

and val2014. Specifically, for every image in the COCO

dataset, we detect instances in the image. For each instance,

we find the cropped image (described above) and include

the image in the dataset if either; (1) the detected surface has

more than 80% geodisic point similarity [4] to the ground

truth DensePose-CSE dataset [19], or (2) the instance has

a confidence score higher than 99.5%. Out of these detec-

tions, we filter out all images that are not in the aspect ra-

tio range [0.4, 4] (height/width), images that cover an area

smaller than 144× 80 pixels, or images that contains more

than 25% zero-padding (in image area).

After filtering the detections, we are left with

43, 053 images from COCO train2014, and 10, 777
in val2014. We use this train/validation split for our

experiments. The dataset is published open source at

github.com/hukkelas/full body anonymization.

1Specifically, R-101-FPN-DL-s1x.

C. Additional Quantitative Results

Table 1 includes all metrics for every model that is re-

ported in the main paper.

I. Truncation Trick

The truncation trick is an established technique to sam-

ple latent vectors from a truncated distribution to improve

generated image quality at the cost of diversity of samples

[1]. A similar strategy is adopted for the intermediate la-

tent space of StyleGAN [10], which is shown to be more

effective than truncating in z [13].

We adopt a similar strategy [10, 13] for the conditional

latent space of V-SAM. We find the mass of center; ω̄i =
Ez∼P (z)[fω(ωi, z)]. Then, we evaluate the effect of interpo-

lation and clamping the latent by the following apporaches;

• Interpolate ω: ω̄ + ti · (ω − ω̄),

• Clamp ω: clamp(ω, ω̄ − tc, ω̄ + tc),

• Interpolate z: ti · z,

• Clamp z: clamp(z,−tc, tc)

where ti ∈ R, ti ∈ [0, 1], and clamp(x, xlower, xupper) sets

all elements of x that are outside the range of [xlower, xupper]
to xlower or xupper.

We observe that truncating the intermediate latent space

ω yields a better tradeoff between quality and diversity,

compared to truncating in z (Figure 1).

Interpolating in ω The disentangled representation of V-

SAM allows for natural transitions between different syn-

thesized styles. Figure 2 reflects that linearly interpolating

between two randomly sampled ω yields a natural transi-

tion. Observe that the interpolation path is smooth, where

different features of the synthesized person is gradually

changed. Note that we observe a discontinuous transition

(e.g. Row 5 in Figure 2) for some combinations of con-

ditional pose and sampled ω. We speculate that a deeper

mapping network can further improve the disentanglement

and mitigate this non-smooth transition.

II. Effect of Anonymization for Computer Vision

Anonymizing Data for Evaluation (PASCAL VOC)

Following the same approach as for COCO (described in

the main paper), we show that surface-guided anonymiza-

tion strongly improves over traditional techniques for eval-

uation purposes (Table 2). Furthermore, we note a slight

gap between surface-guided anonymization and the origi-

nal dataset (50.3 vs 51.8 AP). We believe this originates

primarily from errors in detection, as we use a confidence

threshold of 0.1.

https://github.com/hukkelas/full_body_anonymization
https://github.com/facebookresearch/detectron2/blob/main/projects/DensePose/configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml
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Figure 1: Analysis of truncation techniques for V-SAM. (a) Compares different truncation strategies applied to the interme-

diate latent space ω or z. Truncation in ω yields a better trade off between diversity and image quality. (b) Evaluates the

effect of ω interpolation , where we interpolate a sampled latent towards ω̄. Increasing the truncation (t) gradually improves

image quality at the cost of sample diversity.

Figure 2: Example of latent interpolation in the intermedi-

ate latent space ω. The images are generated with linear in-

terpolation between two randomly sampled ω, starting from

0 (leftmost column) to 1 (rightmost column). Each row

is generated with different latents. No latent truncation is

done.

Anonymizing data for Training Surface-guided

anonymization slightly improves over traditional

anonymization when using the anonymized data for

training (Table 3, Table 4). Our naive anonymization of

COCO without modifying object labels (e.g. not removing

the class ”tie”) introduces ambiguities in the training

Table 2: Object Detection AP on the PASCAL VOC val-

idation set [2]. The results are from a pre-trained Faster

R-CNN [23] R50-C4 from detectron2 [27].

Validation Dataset AP50:95 ↑ AP50 ↑ AP75 ↑

Original 51.8 80.3 56.5

Mask Out 47.9 75.2 51.4

8× 8 Pixelation 47.2 75.1 50.8

16× 16 Pixelation 48.5 76.7 52.0

Ours 50.3 78.9 54.2

objective, which we believe significantly degrades training

performance. This issue is not as severe for pixelation, as

these objects are still present in the image. Furthermore,

we note that the CSE detector has several false positives

and negatives which directly impacts the training objective.

For example, false positives yields highly corrupted images

with surface-guided anonymization.

D. Additional Qualitative Results

I. COCO­Body

Random examples from the COCO-Body dataset are

given in Figure 3, Figure 4, Figure 5, and Figure 6.

II. DeepFashion

Random examples from the DeepFashion-CSE dataset

are given in Figure 7, Figure 8, and Figure 9.

III. COCO

Random examples from the COCO dataset are given in

Figure 10, Figure 11, Figure 12, Figure 13, Figure 14 and

Figure 15.

https://github.com/facebookresearch/detectron2/blob/335b19830e4ea5c5a74a085a04ff4a2f1a1dbf71/configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml


Table 3: Instance segmentation mask AP on the COCO validation set [15]. The results are from a Mask R-CNN [5] R50-

FPN-3x from detectron2 [27] trained on different anonymized datasets. The validation set is not anonymized.

Training Dataset AP50:95 ↑ AP50 ↑ AP75 ↑ APs ↑ APm ↑ APl ↑ APPerson ↑

Original 37.1 58.7 39.8 18.8 39.6 53.3 47.8

Mask Out 34.6 55.2 36.7 16.7 36.5 50.0 44.7

8× 8 Pixelation 34.8 55.7 37.0 16.9 36.7 50.3 46.5

16× 16 Pixelation 35.0 55.9 37.3 17.3 37.1 50.4 46.9

Ours 35.0 56.0 37.5 17.7 36.7 50.6 46.5

Table 4: Object Detection AP on the PASCAL VOC valida-

tion set [2]. The results are from a Faster R-CNN [23] R50-

C4 from detectron2 [27] trained on different anonymized

datasets. The validation set is not anonymized.

Training Dataset AP50:95 ↑ AP50 ↑ AP75 ↑

Original 51.8 80.3 56.5

Mask Out 51.3 80.0 55.7

8× 8 Pixelation 51.2 79.9 55.03

16× 16 Pixelation 51.2 79.8 55.7

Ours 51.3 80.1 56.0
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(a) Original (b) SPADE [21] (c) Config D (d) Config E (no

truncation)

(e) Config E (no

truncation)

(f) Config E (no

truncation)

(g) Config E (no

truncation)

(h) Config E

(truncated)

Figure 3: Diverse synthesized images from COCO-Body. We truncate the normal of SPADE and Config D, and show diverse

results for Config E. Note that the images are randomly sampled and the latent variable for (d-g) is randomly sampled with

no latent truncation.
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Figure 4: Diverse synthesized images from COCO-Body. We truncate the normal of SPADE and Config D, and show diverse

results for Config E. Note that the images are randomly sampled and the latent variable for (d-g) is randomly sampled with

no latent truncation.
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Figure 5: Diverse synthesized images from COCO-Body. We truncate the normal of SPADE and Config D, and show diverse

results for Config E. Note that the images are randomly sampled and the latent variable for (d-g) is randomly sampled with

no latent truncation.
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Figure 6: Diverse synthesized images from COCO-Body. We truncate the normal of SPADE and Config D, and show diverse

results for Config E. Note that the images are randomly sampled and the latent variable for (d-g) is randomly sampled with

no latent truncation.
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Figure 7: Diverse synthesized images from DeepFashion-CSE. (b) shows generated results with a truncated latent, and all

other columns use no truncation. Each column is synthesized with the same latent variable z. All images and latent variables

are randomly sampled. Zoom in for details.
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Figure 8: Diverse synthesized images from DeepFashion-CSE. (b) shows generated results with a truncated latent, and all

other columns use no truncation. Each column is synthesized with the same latent variable z. All images and latent variables

are randomly sampled. Zoom in for details.
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Figure 9: Diverse synthesized images from DeepFashion-CSE. (b) shows generated results with a truncated latent, and all

other columns use no truncation. Each column is synthesized with the same latent variable z. All images and latent variables

are randomly sampled. Zoom in for details.
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Figure 10: Randomly sampled images from the anonymized COCO [15] validation dataset. Each image is sampled with

latent truncation (t=0), see Appendix C for details. Zoom in for details.
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Figure 11: Randomly sampled images from the anonymized COCO [15] validation dataset. Each image is sampled with

latent truncation (t=0), see Appendix C for details. Zoom in for details.
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Figure 12: Randomly sampled images from the anonymized COCO [15] validation dataset. Each image is sampled with

latent truncation (t=0), see Appendix C for details. Zoom in for details.
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Figure 13: Randomly sampled images from the anonymized COCO [15] validation dataset. Each image is sampled with

latent truncation (t=0), see Appendix C for details. Zoom in for details.
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Figure 14: Randomly sampled images from the anonymized COCO [15] validation dataset. Each image is sampled with

latent truncation (t=0), see Appendix C for details. Zoom in for details.
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Figure 15: Randomly sampled images from the anonymized COCO [15] validation dataset. Each image is sampled with

latent truncation (t=0), see Appendix C for details. Zoom in for details.


