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1. Comparison between Sparsely and Densely
Sampled Light Fields

Fig. 1 shows the different characteristics between

sparsely sampled (sparse) and densely sampled (dense) LF

images. We draw the overlapped images between center-

view (CV) images and the rightmost images of LF. Both LF

images have the angular resolution (U, V ) = (5, 5), where

U and V represent the horizontal and vertical angular res-

olutions. The corresponding angular coordinate (u, v) is

(2, 2) and (4, 2), respectively. It is clear that the occlu-

sion in the sparse LF image shows larger disparities than

occlusion in the dense LF image. In the visible map, with

respect to the CV images (u, v) = (2, 2), while the green la-

bel denotes the occluded regions visible in other views, the

red label signifies the occluded regions invisible in other

views. We labeled the visible maps by ourselves. In the

yellow dotted circle, the dense LF image has more invisible

regions even both LF images have a similar occlusion size.

On the right of gray dotted lines, there are de-occlusion out-

puts of DeOccNet [9] and ours, both trained on the dense

LF dataset. The proposed model could reconstruct clear

occlusion-free CV image with reduced occlusion artifacts

in both sparse and dense LF images.

The table 1 shows the comparison of the number of

scenes in the sparse and dense LF datasets. Clearly, the

*Equal contribution.

Category Dataset # of Scenes

Sparse LF
Stanford 30

DeOccNet Train [9] 60

Dense LF

DUTLF [8] 1462

DUTLF-V2 [4] 4204

LFSD [3] 100

Table 1. The number of training and test scenes of publicly avail-

able real-world LF datasets. Dense LF datasets usually have larger

number of scenes compared to sparse LF datasets.

dense LF datasets have the larger number of scenes than the

sparse LF datasets because it is easier to collect the dense

LF scenes using the portable LF camera than the sparse LF

scenes. Thus, it is reasonable to train a model using the

dense LF datasets to make the model learn various features

in scenes.

2. Experiments on Various Fusion Methods

The proposed framework combines the LF features

(FLF ) to the decoder features of occlusion inpainter (Fdc)

to reconstruct the occlusion-free CV image through the

background information from LFs as well as context in-

formation. Since the FLF includes not only useful back-

ground information but also occlusion information, which

may cause artifacts, a careful fusion method is required. We

mainly focus on the attention based feature fusion methods

to filter out occlusion artifact from FLF and only back-

ground information is combined to fused features fFuse.

The self-attention, which is used in LF feature extractor

(LFE) of our proposed framework, is experimented as self-

attention fusion (SA fusion). The output features of kth

layer of encoder in LFE (fk
LF ) is concatenated to the kth

layer of decoder in occlusion inpainter (fk
dc). The self-

attention output is calculated by the concatenated features

and residually added to the fk
dc with learnable parameter γ,

which is initially set to 0.25. Our occlusion inpainter (OI)

has reverse mask attention in the decoder (ARM ) which has

feature-level information about the occlusion. Inspired by

an encoder-decoder attention used in the Transformer [7],

in which the decoder refers the encoder feature to generate

a sentence, we design a mask-feature attention which refers

the occlusion mask information to fuse the features. (M-F
fusion). Based on the self-attention module, we replace the

input of key convolution as Ak
RM , the kth layer of reverse

mask attention. Figure 2 shows the detailed architecture

of each fusion methods. Even though attention based fu-

sion methods requires more parameters and computational

power, simple 1x1 convolution shows similar performance.
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Figure 1. Illustration of the different characteristics of sparse LF image (top) and the dense LF image (bottom).

Since 1x1 convolution is more efficient and could be easily

applied to other architectures, we adopt 1x1 convolution as

a fusion method for proposed framework.

3. Mask Embedding Method
3.1. Light Field Reparameterization

Light field (LF) reparameterization [2, 1] can be ex-

pressed as

Ld(x, y, u, v) = L0(x+ ud, y + vd, u, v), (1)

where Ld and L0 signify the reparameterized LF and input

LF images, respectively. By controlling the disparity plane

d, the zero-disparity plane (focused plane) can be moved.

In the mask embedding of our training step, a single occlu-

sion mask is copied to each view image, then the copied

multiple occlusion masks are reparameterized on an arbi-

trary disparity plane d. By doing so, a mask can have the

disparity information in the 4-D LF manifold.

3.2. Settings for Reparameterization

In the qualitative results on the dense LFs in the main

manuscript, we control the zero-disparity plane of input LF

images to make the foreground occlusions have positive dis-

parity, by reparameterizing the LF scenes from EPFL-10 [6]

and Stanford Lytro dataset [5]. Figs. 4 and 3 show the out-

put de-occluded images generated by the DeOccNet* and

the proposed framework from various disparity planes d in

Eq. 1, where DeOccNet* denotes the DeOccNet [9] trained

on the same training dataset with ours. If d is too small,

foreground objects are not considered as occlusion and if

d is too large, background objects are also considered as

occlusion. With the proper LF reparametrization, the fore-

ground occlusion is properly removed with the proposed

framework.

3.3. Detailed Implementation of Mask Embedding

In this subsection, we describe the detailed mask em-

bedding approach used in this paper. Although the existing

methods [9] generated the mask embedded scenes before

training as pre-pocessing, we generate various scenes using

a set of occlusion mask templates in training time for the

data augmentation.

Original mask embedding randomly embed the 1-3

masks to deal with multi disparity occlusion scenario, and

they randomly select the disparity plane d from [0, D],
[D, 2D], and [2D, 3D] for the first, second and third occlu-

sion. Different from the existing methods, we embed more

occlusion in low disparity plane in order that the model

could deal with dense LFs. At the same time, the model

should be also trained on a large disparity occlusion sce-

narios to work on the sparse LFs. Therefore, we randomly

select 1-3 occlusions with disparity plane from [0, 1], [1, 4],
and [4, 9], respectively, not uniformly selecting the disparity

plane.

4. Evaluation Details
Qualitative results. In this part, we provide the enlarged

input, output images used in qualitative results of the paper

for a detailed comparison (Figs. 5, 6, 7, and 8).

Quantitative results. In this part, we provide the in-

put, output and ground truth images used in quantitative re-
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Figure 2. Illustration of the fusion methods used in ablation study, self-attention based fusion and mask-feature based fusion.

sults of the paper. We calculate peak signal-to-noise ratio

(PSNR) and structural similarity index measure (SSIM) for

quantitative evaluation. Figs. 9 and 10 show the input CV

images, ground truth occlusion-free CV images, and LF-

DeOcc outputs. Note that all scenes are synthetic sparse LF

images, where most of the background objects are visible in

other LF views. As shown in qualitative results, our model

generates the clear and accurate de-occlusion outputs with

less occlusion artifacts.

5. Experimental Results on Various Scenes

In this section, we provide various real-world LF-DeOcc

outputs generated by existing and proposed LF-DeOcc

methods. Figs. 11 and 12 shows the LF-DeOcc outputs of

the dense LF images in EPFL-10 dataset [6] and Stanford

Lytro dataset [5]. Different from the existing LF-DeOcc

methods, the proposed framework can remove the large oc-

clusions in dense LF images, effectively preventing the ar-

tifacts from occlusions. However, still some limitations can

be seen as discussed in the main manuscript. Since the

inpainting knowledge is sub-optimal due to the relatively

limited number of dataset compared to single RGB dataset

(1418 scenes), the removed regions are sometimes unnatu-

ral if the occlusion is extremely large. OI pre-trained on sin-

gle RGB dataset may be effective, but the inpainting knowl-

edge is catastrophically forgot during the LF-DeOcc train-

ing time. We expect some continual learning approach may

solve this problem in exchange of memory, parameters, or

training times.
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Figure 3. Different outputs from the DeOccNet*. Each row shows the output LF-DeOcc image depending on the input LF image reparam-

eterized by the parameter d.
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Figure 4. Different outputs from the proposed framework. Each row shows the output LF-DeOcc image depending on the input LF image

reparameterized by the parameter d.
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Figure 5. The enlarged outputs used in the qualitative results of main manuscript.
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Figure 6. The enlarged outputs used in the qualitative results of main manuscript.
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Figure 7. The enlarged outputs used in the qualitative results of main manuscript.
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Figure 8. The enlarged outputs used in the qualitative results of main manuscript.
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Figure 9. De-occlusion outputs on 4-syn dataset[9] using various LF-DeOcc methods, which is used for quantitative results.
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Figure 10. De-occlusion outputs on 9-syn dataset[10] using various LF-DeOcc methods, which is used for quantitative results.
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Input CV DeOccNet Zhang et al. DeOccNet* Zhang et al.* Ours
Figure 11. De-occlusion outputs on various real-world occlusion scenes in EPFL-10 dataset[6] which is a real-world dense LF dataset.

Input CV DeOccNet Zhang et al. DeOccNet* Zhang et al.* Ours
Figure 12. De-occlusion outputs on various real-world occlusion scene in Stanford Lytro dataset[5] which is a real-world dense LF dataset.
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