
Supplementary Material for Ev-NeRF: Event Based Neural Radiance Field

1. Additional Implementation Details
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Figure 1. Network Architecture of Ev-NeRF. The network consists
of fully-connected layers. The numbers in the colored blocks in-
dicate the dimension of corresponding layers.

We implement Ev-NeRF using PyTorch using the NeRF
formulation. For positional encoding, we use 10 frequen-
cies for x and 4 for d. The weight λ of Lthres in Equation
8 is set large to 1000 to avoid thresholds from continuing
to decrease. For all experiments, we use the Adam opti-
mizer [3] with a learning rate of 5 × 10−4. Ev-NeRF takes
about an hour in RTX 3090 GPU to train per scene and 1.5
seconds to render a single image.

Similar to NeRF, the neural network takes the 3D co-
ordinate and the ray direction as input and outputs the vol-
ume density and emitted radiance. Sinusoidal positional en-
coding, γ (·), is applied to input variables. Figure 1 shows
the detailed architecture of our network. The architecture
mostly follows that of NeRF [4], however it predicts the
emitted luminance value instead of color values. Follow-
ing NeRF [4], we add zero-mean, unit-variance Gaussian
random noise to the density σ for slightly improved perfor-
mance.

2. Dataset Description

For the real-world data, we use a sub-sequence of the
event sequences from IJRR [5], HQF [10] and Stereo
DAVIS [12] for training. The data includes intensity im-
ages at regular time intervals (about 24 Hz) and asyn-
chronous event data. These datasets are generated with a
DAVIS240C [1] event camera and both intensity images
and events have a resolution of 240×180. In our setup,
we assume camera poses are given, which are calculated
from running SfM [8, 9] with the intensity frames. Ex-
cept for this process, the intensity frames are not available
during training and are used only for evaluation. We use
sub-sequences with a length of 50 to 100 intensity frames
for training and the exact frame index corresponding to the
original dataset [5, 10] is described in Table 1. For compar-
ison with event-based SLAM, we use two sequences (sim-
ulation 3planes, reader) from [12].

For the synthetic data, we examine the extracted scene
structure using models widely used for NeRF [4], namely
lego, hotdog, mic, drums, and chair. Figure 2 shows exam-
ples of models and generated events.

Dataset Scene start frame index end frame index

IJRR

office zigzag 0 100
office spiral 0 100

boxes 230 330
dynamic 6dof 30 130

hdr boxes 70 120

HQF
reflective materials 60 150
high texture plants 930 1000

still life 300 350

Stereo DAVIS monitor 0 100
reader 0 100

Table 1. The start and end frame index for intensity frames used
for our experiments. We use sub-sequences of original datasets,
namely IJRR [5], HQF [10] and Stereo DAVIS [12].

lego hotdog mic chair drum 

Figure 2. Visualization of generated events for each scene.

3. Description on Convergence

10 min 20 min 30 min 1 hour
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Figure 3. Intermediate results over the training time for each scene.

While events provide only changes of brightness, we em-
pirically found it converges to reliable absolute brightness
as the learning progresses. The supplementary video shows
how Ev-NeRF converges on absolute brightness as training
progresses. Figure 3 contains a few representative images.
Ev-NeRF obtains a rough 3D structure in about 10 min, and
the subsequent timesteps focus on capturing further details.
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MSE ↓ SSIM ↑ LPIPS ↓
Scene w/o joint w/o noise inj. full w/o joint w/o noise inj. full w/o joint w/o noise inj. full
office zigzag 0.03 0.04 0.03 0.40 0.41 0.42 0.29 0.27 0.27
office spiral 0.04 0.04 0.03 0.41 0.41 0.41 0.29 0.28 0.27
boxes 0.04 0.06 0.04 0.47 0.45 0.48 0.32 0.33 0.31
dynamic 6dof 0.21 0.24 0.19 0.25 0.24 0.26 0.42 0.43 0.41
reflective materials 0.06 0.07 0.05 0.39 0.38 0.40 0.35 0.36 0.35
high texture plants 0.04 0.03 0.03 0.43 0.43 0.44 0.34 0.35 0.34
still life 0.04 0.05 0.03 0.52 0.51 0.53 0.21 0.19 0.18
monitor 0.05 0.08 0.03 0.30 0.26 0.32 0.38 0.39 0.37
reader 0.11 0.12 0.09 0.44 0.43 0.45 0.38 0.36 0.35

Table 2. Ablation study on the effect of joint training of the sensor threshold values and noise injection. The columns display results
without joint training, without noise injection, and the full model, respectively. Our full training method shows the optimal reconstructed
image quality.

Without noise injection With noise injection

Figure 4. Visual analysis on noise injection, which helps solve am-
biguity in places such as walls where events do not occur.

4. Ablation Studies
Joint Training As shown in Equation (8), we propose
joint training that concurrently optimizes ∆I and the thresh-
old values B+

j , B−
j of all timestamps with λ = 1000. We

verify the advantage of our joint training on intensity recon-
struction in Table 2. We compare the proposed joint training
against the ablated version with pre-fixed threshold values
±0.3 and λ = 0. Results show that the joint training scheme
is beneficial to the reconstructed image quality.

Noise Injection We verify that the additional random
noise slightly improves the quality of Ev-NeRF. When we
compile the training data of events occurred during time
slice [Tj , Tj+1), we add random events whose amount is
5% of the number of events that occurred at time. Table 2
numerically compares the quality of reconstructed images
with random noise injection against the original event slice
Ej and verifies that the noise injection is beneficial to the im-
age quality. Figure 4 visualizes the effect of noise injection.
The additional noise helps the neural volume to resolve am-
biguity in the areas where events do not occur, such as the
solid-colored wall behind the monitor.

5. Additional Results
Here we show more examples of quantitative and qual-

itative results. The results are presented in various scenes

with three baselines: E2VID [7], E2VID+ [10] and ssl-
E2VID [6], which are designed to reconstruct intensity im-
ages.

5.1. Intensity Image Reconstruction

Additional Quantitative Results Table 3 displays the
quantitative comparison against baseline methods with real-
world datasets, namely IJRR [5], HQF [10], and Stereo
DAVIS dataset [12]. We compared using three metrics:
mean squared error (MSE), structural similarity (SSIM) and
perceptual similarity (LPIPS) [11]. For real-world data, Ev-
NeRF outperforms ssl-E2VID and is on par with E2VID
and E2VID+ without observing the ground truth intensity
frames.

However, we used sub-sequences of real datasets and
event camera trajectory from sub-sequences is not optimal
for NeRF, which is typically trained with cameras located
on the hemisphere around the object from roughly con-
stant distances. This causes Ev-NeRF to show lower perfor-
mance compared to E2VID+ for some sequences. As men-
tioned in Table 1 from the main paper, with typical trajecto-
ries for NeRF, the quality of intensity images of Ev-NeRF is
then consistently superior to the baseline, especially in the
presence of noise.

Additional Qualitative Results for Intensity Image and
Novel View Synthesis Figure 6 contains the results of
intensity image reconstruction for all of the sequences we
use dwith a qualitative comparison with various baselines
and Figure 7 shows image reconstruction results observed
from various camera poses. Also, the supplementary video
contains the event sequences used for training, paired with
corresponding reconstructed intensity images and depth re-
sults. Figure 8 shows novel view synthesis observed from
the viewpoints that are not available in the input dataset.
Ev-NeRF maintains comparable performance for all scenes.
Additional results on novel view synthesis are shown in the
supplementary video.
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MSE ↓ SSIM ↑ LPIPS ↓
Scene E2VID E2VID+ ssl-E2VID Ours E2VID E2VID+ ssl-E2VID Ours E2VID E2VID+ ssl-E2VID Ours
office zigzag 0.07 0.05 0.08 0.03 0.38 0.39 0.34 0.42 0.34 0.25 0.40 0.27
office spiral 0.06 0.05 0.07 0.03 0.38 0.39 0.37 0.41 0.35 0.27 0.39 0.27
boxes 0.06 0.03 0.08 0.04 0.47 0.60 0.45 0.48 0.31 0.20 0.37 0.31
dynamic 6dof 0.12 0.06 0.15 0.19 0.29 0.34 0.28 0.26 0.40 0.33 0.54 0.41
reflective materials 0.07 0.05 0.08 0.05 0.39 0.45 0.30 0.40 0.31 0.24 0.38 0.35
high texture plants 0.04 0.02 0.05 0.03 0.42 0.55 0.42 0.44 0.21 0.12 0.23 0.34
still life 0.05 0.02 0.08 0.03 0.50 0.61 0.40 0.53 0.23 0.13 0.29 0.18
monitor 0.04 0.04 0.09 0.03 0.31 0.36 0.33 0.32 0.39 0.20 0.34 0.37
reader 0.07 0.04 0.09 0.09 0.42 0.43 0.38 0.45 0.31 0.25 0.40 0.35

Table 3. Quantitative comparison of image reconstruction on scenes from the IJRR [5], HQF [10] and Stereo DAVIS [12] dataset. The
results with the best performance are in bold. We additionally underline the runner-up metric.

Intensity Image Reconstruction on Different Sensor
Resolution We further validate the domain-invariance of
Ev-NeRF with intensity image reconstruction results on the
Color Event Camera Dataset (CED) [2]. The data is com-
posed of three channels of color events in a different res-
olutions (346×240). All of the datasets presented in other
sections are processed in the resolution of 240×180 bound
to the sensor resolution. Ev-NeRF does not assume any
fixed resolution of the scene and can be applied in multi-
ple color channels without fine-tuning. We extend our ap-
proach to three color channels following the method sug-
gested in [2]; we first reconstruct the intensity images via
red, green, and blue channels respectively, and upsample the
individual channels of the image to the original resolution to
produce a single color image. Figure 5 shows an exemplar
color DAVIS frame and reconstructed color image for sim-
ple jenga scene from CED [2]. Ev-NeRF can find the scene
structure within reasonable ranges. More importantly, there
is no additional training to account for the domain shift in
sensor characteristics or resolution.

5.2. Noise Resistant Image Reconstruction

Ev-NeRF is extremely robust under noise and maintains
the quality of the reconstruction under data of various noise
levels. In addition to the visual example shown in Figure
4 of the main text, we show results given data corrupted
with different levels of noise in Figure 9. Figure 10 con-
tains more results of image reconstruction with severe noise
of ratio 0.9. Ev-NeRF exhibits little degradation in perfor-
mance and therefore can be useful in an extreme environ-
ments subject to unknown noise characteristics.
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[7] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide
Scaramuzza. Events-to-video: Bringing modern computer
vision to event cameras. IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR), 2019.

[8] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[9] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016.

[10] T. Stoffregen, C. Scheerlinck, D. Scaramuzza, T. Drum-
mond, N. Barnes, L. Kleeman, and R. Mahoney. Reducing
the sim-to-real gap for event cameras. In ECCV, 2020.

[11] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018.

3



of
fi

ce
 z

ig
za

g 
bo

xe
s 

re
fl

ec
tiv

e 
m

at
er

ia
ls

 
hi

gh
 te

xt
ur

e 
pl

an
ts

 
dy

na
m

ic
 6

do
f 

st
ill

 li
fe

 
of

fi
ce

 s
pi

ra
l 

re
ad

er
 

m
on

ito
r 

Events E2VID [43] E2VID+ [53] ssl-E2VID [37] Ours Ground Truth 

Figure 6. Qualitative comparison on intensity image reconstruction under various scenes.
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Figure 7. Qualitative intensity image reconstruction results at various time steps.
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Figure 8. Qualitative results for novel view image reconstruction.
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Figure 9. Qualitative comparison under different noise levels.

Figure 10. Noise reduction of events over various scenes with extreme noise ratio of 0.9.
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