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In this appendix, we provide additional experiment re-
sults, visualization results, and detailed analysis of detec-
tion recovery which are not included in the main paper.

A. Additional Implementation Details
We use shorter epochs when CrowdHuman dataset is not

included but only MOT or HiEve datasets are used for train-
ing. The models are trained for 30 epochs and the learning
rate is dropped from 2e−4 to 2e−5 at 20 epoch. The same
loss weights are adopted, but we use wedge as 1, instead
of 0.1. For inference, the same threshold values are used
regardless of whether CrowdHuman [8] dataset is used or
not. In the ablation experiments, we deploy the detection
threshold values of (τinit, τD, τDlow

) as (0.5, 0.4, 0.2) for
FairMOT [13] and BYTE [12] following the official code of
ByteTrack1.

Our implementation is based on detectron2 framework2.
Regarding training time of the ablation experiments, with
two NVIDIA V100 GPUs, 3 hours are spent on training
SGT without CrowdHuman dataset, while 2 days are taken
if it is included. We observe that the inference speed is
affected by the version of NVIDIA driver and the num-
ber of CPUs. The reported inference speed is measured on
NVIDIA driver version of 460.73.01 with CUDA version of
10.1.

B. Additional Experiment Results
B.1. MOT Detection Challenge Evaluation Results

For evaluation metrics of MOT17/20 Detection bench-
marks, we choose precision, recall, F1, and average pre-
cision (AP) [5]. As shown in Table 1, SGT achieves the
best in every metric on MOT17/20 Detection benchmarks.
SGT outperforms GSDT [10] which is also based on Cen-
terNet [15] and GNNs. As stated in Section 2.2 of the main
paper, GNNs in GSDT aggregate the current and past fea-
tures to enhance the current image features. However, re-
lational features used for association in GSDT are still lim-
ited to pairwise features while relational features in SGT

*The work was partially done during an intern at Clova AI.
1https://github.com/ifzhang/ByteTrack
2https://github.com/facebookresearch/detectron2

Table 1. Evaluation results of the MOT17/20 Detection bench-
marks.
Benchmark Method AP↑ Recall↑ Precision↑ F1↑

MOT
17Det

FRCNN [7] 0.72 77.3 89.8 83.1
GSDT [10] 0.89 90.7 87.8 89.2
YTLAB [1] 0.89 91.3 86.2 88.7
SGT (ours) 0.90 93.1 92.5 92.8

MOT
20Det

ViPeD20 [2] 0.80 86.5 68.1 76.2
GSDT [10] 0.81 88.6 90.6 89.6
SGT (ours) 0.90 91.6 92.6 92.1

are updated by GNNs to become multi-hop features. Con-
sequently, low-scored detections are not tracked in GSDT.
The high recall supports the effectiveness of detection re-
covery in SGT. On the other hand, the high precision indi-
cates that detection recovery is achieved without introduc-
ing extra false positives.

B.2. Visualization Comparison

Figure 1 shows qualitative comparison between SGT and
others [13, 14, 10, 9] using the same detector. In MOT17,
the partially occluded people have low detection confidence
score and they are not used as tracking candidates in Fair-
MOT, GSDT, and CorrTracker since they only use high-
scored detections for tracking. As a result, these occluded
people are missed. In MOT20, existing methods use lower
detection threshold (τD) than MOT17 due to frequent oc-
clusions in MOT20. However, they suffer from FPs while
SGT does not have such FPs without missed detections.

B.3. Additional Ablation Experiments

Top-K vs Detection threshold. In Table 6 of the main pa-
per, the robustness of top-K sampling in SGT is shown by
the consistent performance with a wide range of K values
and different K values for training and inference. Here, we
experiment about using a low value of detection threshold,
τD, that is an alternative option for choosing tracking can-
didates instead of top-K sampling.

According to Table 2, when SGT is trained with track-
ing candidates sampled by top-K whose K is 100 or 300, it
shows the consistent performance with both K = {50, 300}
and τD = {0.01, 0.1} while marginal degradation is ob-



Figure 1. Qualitative comparison of CenterNet [15] based online JDT models [13, 10, 9, 14] on the MOT17/20 test datasets.

Table 2. Ablation study of threshold and top-K for choosing de-
tections for tracking candidates. CrowdHuman dataset [8] is addi-
tionally used for training.

train inference MOTA↑ IDF1↑ MT↑ FP↓ FN↓ IDS↓
K = 300 K = 300 73.8 74.7 52.5 2620 11047 476
K = 300 K = 50 73.8 74.0 52.5 2531 11159 474
K = 300 τD = 0.01 74.1 74.9 53.4 2492 11050 459
K = 300 τD = 0.1 73.5 73.4 51.6 2331 11398 604
K = 300 τD = 0.3 72.8 72.4 50.7 2256 11605 843

K = 100 K = 300 74.1 76.5 53.1 2544 10971 460
K = 100 K = 50 74.2 75.9 53.1 2505 11000 458
K = 100 τD = 0.01 74.2 76.2 53.1 2530 10961 451
K = 100 τD = 0.1 74.0 75.9 52.2 2391 11146 538
K = 100 τD = 0.3 73.3 73.6 51.0 2348 11313 795

τD = 0.01 K = 300 74.4 76.0 53.4 2542 10774 498
τD = 0.01 K = 50 74.3 77.2 53.1 2475 10920 485
τD = 0.01 τD = 0.01 74.4 76.2 53.4 2543 10780 500
τD = 0.01 τD = 0.1 73.2 73.1 52.2 2438 11034 1002
τD = 0.01 τD = 0.3 71.9 71.4 51.0 2348 11344 1480

τD = 0.1 K = 300 73.9 76.0 52.5 2851 10764 470
τD = 0.1 K = 50 74.0 76.0 53.1 2807 10745 484
τD = 0.1 τD = 0.01 74.0 75.7 52.5 2842 10722 496
τD = 0.1 τD = 0.1 73.9 75.5 52.8 2849 10789 486
τD = 0.1 τD = 0.3 73.7 74.5 52.5 2885 10804 541

served with τD = 0.3. On the other hand, large drop
in MOTA and IDF1 is shown when SGT is trained with
τD = 0.01 and evaluated with τD = 0.3. In contrast, SGT
trained with τD = 0.1 shows the consistent performance
when τD = 0.3 is used for selecting tracking candidates for
inference.

Based on the results, detection threshold can be viewed
as the hyperparameter that should be carefully tuned. Al-
though K is also the hyperparameter, K is more intuitive
value representing the maximum number of objects to be
tracked and is easier to be decided than τD which is af-
fected by many factors (e.g., model architecture, training
method). For this reason, we adopt top-K sampling method
to include low-scored detections in SGT.

Table 3. Performance comparison of FairMOT [13] and SGT with
different backbone networks: ResNet-18/101 [4], DLA-34 [11],
and hourglass-104 [6]. The models are trained using the extra
CrowdHuman [8] dataset.

Model Backbone MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓
FairMOT [13] Res-18 66.1 69.9 40.1 20.4 2036 16029 265

SGT (ours) Res-18 68.4 69.3 47.2 15.6 2359 14086 659

FairMOT [13] Res-101 70.2 72.2 47.8 14.5 2545 13178 364
SGT (ours) Res-101 71.1 72.4 53.4 12.4 3197 11678 720

FairMOT [13] DLA-34 72.2 74.7 47.8 18.0 2660 12025 336
SGT (ours) DLA-34 74.2 76.3 53.1 13.3 2514 10978 451

FairMOT [13] HG-104 74.4 77.1 54.0 12.1 2636 10844 344
SGT (ours) HG-104 74.8 77.1 56.0 10.9 2713 10454 428

Table 4. Effect of the number of the edges for each criterion. Cen-
ter distance, IoU, and cosine similarity are three criteria used in
SGT.
#edges per criterion MOTA↑ IDF1↑ MT↑ FP↓ FN↓ IDS↓

5 71.0 72.8 47.2 2450 12590 624
10 71.3 73.8 46.6 2190 12742 588
20 71.1 73.6 47.8 2308 12535 755

Different backbone networks. Table 3 shows the perfor-
mance comparison of SGT and FairMOT [13] with different
backbone networks [4, 11, 6] used in CenterNet [15]. For
hourglass backbone, we use the image size of (H,W ) =
(640, 1152), instead of (608, 1088) since only a multiple
of 128 is allowed. SGT achieves lower FN and ML, and
higher MT and MOTA than FairMOT across all backbone
networks. In other words, SGT has less missed detec-
tions and more long-lasting tracklets than FairMOT. This
result is corresponding to our motivation of detection re-
covery by tracking in SGT. Especially, SGT shows larger
improvement in MOTA with the small backbone networks
(e.g., resnet18 and dla34). When MOT models are deployed
with the limited resource of hardware, SGT can be served
as an effective solution.



Figure 2. Sensitivity analysis of τE and τinit.

Table 5. Ratio of recovered detections over all detections in each
sequence of MOT17/20 test datasets.

Benchmark Sequence Recovery Ratio (%)

MOT17

MOT17-01 12.0
MOT17-03 1.8
MOT17-06 6.8
MOT17-07 10.0
MOT17-08 14.6
MOT17-12 10.3
MOT17-14 12.6

MOT20

MOT20-04 3.8
MOT20-06 29.0
MOT20-07 4.9
MOT20-08 35.4

The number of edges. In SGT, nodes across frames are
sparsely connected if only they are close in either Euclidean
or feature space. Specifically, ni

t1 is connected to the nodes
of Nt2 using three criteria: center distance, IoU, and co-
sine similarity. We choose nodes for each criterion and re-
move the duplicates. Table 4 shows the result of experi-
menting with different number of nodes for each criterion.
Although the best performance is achieved with 10, there is
only marginal decrease in MOTA and IDF1 with 5 and 20.
Thus, this is also robust hyperparameter.
Sensitivity of τinit and τE . The robustness of K, which is
the number of tracking candidates, has been shown through
the extensive ablation experiments. Here, we measure the
sensitivity of τinit and τE as well. As shown by Figure 2,
τinit is a sensitive threshold value since it decides initializa-
tion of new tracklets. On the other hand, τE is the minimum
edge score used for matching. It is robust within the range
between 0.2 and 0.4 since correct matching may have high
edge score and the node classifier prevents false positive
matching.

C. Analysis of Detection Recovery
C.1. Ratio of Recovered Detections

According to Table 5, MOT17-08 and MOT20-08 are
the sequences that SGT outputs the highest ratio of re-
covered detections whose confidence score is lower than
τinit = 0.5. Table 6 shows that SGT surpasses CorrTracker
in MOTA by 2.7% in MOT17-08 while SGT shows lower

Table 6. Evaluation result per sequence of MOT17/20 test dataset.
We choose one with high recovery ratio and the other one with low
recovery ratio.
Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

MOT17-06 (6.8% recovery)

SGT (Ours) 65.5 63.2 48.2 12.2 942 2917 210
FairMOT [13] 64.1 65.9 40.1 18.5 526 3533 176
GSDT [10] 63.0 62.0 40.1 21.2 681 3500 180
CorrTracker [9] 66.2 68.2 41.0 17.1 465 3346 171

MOT17-08 (14.6% recovery)

SGT (Ours) 52.6 44.0 32.9 14.5 1076 8546 347
FairMOT [13] 42.2 42.0 22.4 28.9 776 11191 237
GSDT [10] 44.0 40.5 26.3 22.4 991 10523 323
CorrTracker [9] 49.9 46.7 25.0 17.1 1137 9201 250

MOT20-07 (4.9% recovery)

SGT (Ours) 77.9 71.4 76.6 2.7 2277 4774 254
FairMOT [13] 75.6 70.0 76.6 0.9 2988 4770 333
GSDT [10] 75.0 68.1 64.0 1.8 1870 6115 282
SOTMOT [14] 72.6 71.2 76.6 2.7 3675 5066 317

MOT20-08 (35.4% recovery)

SGT (Ours) 54.1 54.5 26.7 26.2 2434 32625 468
FairMOT [13] 27.0 49.5 41.9 14.7 32104 23447 981
GSDT [10] 39.4 48.9 22.5 32.5 9916 36420 608
SOTMOT [14] 43.1 55.1 35.6 19.9 16025 27216 863

MOTA than CorrTracker in MOT17-06 whose recovery ra-
tio is low. In MOT20, similar trend is observed that SGT
achieves larger improvement of MOTA in MOT20-08 than
MOT20-07.

C.2. Recall per Visibility Level

We measure the recall ratio for different visibility levels
of objects and compare them of different models as shown
in Figure 3. Both BYTE [12] and SGT show higher recall
value for low visibility levels than FairMOT [13] since they
perform association of low-scored detections. When objects
are almost invisible with the visibility in the range of (0.0,
0.3), SGT outperforms BYTE in terms of the recall. These
results indicate that SGT successfully tracks the low-scored
detections caused by occlusion, and SGT is robust against
partial occlusion. Also, the effectiveness of node classifier
preventing false positive recovery is demonstrated through
higher precision value of SGT than that of BYTE.

C.3. Visualization of Recovered Detections

Figure 4 shows the cases of detection recovery in the
MOT20 test dataset. In the first row, people indicated by
the blue and brown bounding boxes occlude each other. In
the frame #33, their detection scores are higher than τinit
which is detection threshold value to initialize new tracklet.
However, from frame #34 to #37, their detection scores are
between 0.3 or 0.4 which are lower than τinit, nevertheless,
SGT successfully tracks them. If only high-scored detec-
tions are used for association, they are failed to track, lead-
ing to missed detections and disconnected tracklets. The



Figure 3. Recall ratio comparison of FairMOT [13], BYTE [12] on top of FairMOT [13], and SGT for different visibility levels of objects
in MOT17 validation dataset.

MOT20-08-#33 MOT20-08-#34 MOT20-08-#35 MOT20-08-#37MOT20-08-#36

MOT20-08-#82 MOT20-08-#95 MOT20-08-#96 MOT20-08-#108MOT20-08-#104

Figure 4. Detection recovery cases in MOT20 test dataset [3]. We show the annotation of each bounding box in the format of “{id}-
{detection score}”. The tracklets in the red circles are recovered in the next frames.

Figure 5. Example of ID switch caused by non-human occluder.

second row of Figure 4 is another example of detection re-
covery.

D. Discussion
High IDS in MOT16/17. In Section 4.2 of the main paper,
we stated that non-human occluders in MOT16/17 result in
high IDS in MOT16/17 compared to low IDS in MOT20.
Figure 5 shows the example whose video is taken from a
department store, where non-human occluders commonly
exist.
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