
Supplementary Information: Learning incoherent light emission steering from metasurfaces
using generative models

1. Experimental Details

1.1. Design principles of the metasurface

Dielectric metasurfaces are made up of a sub-wavelength
array of optical nano-resonators which can exert com-
plete control over the phase, amplitude and polarization of
light. Here we design a reconfigurable metasurface that can
dynamically control the direction of light emission from
within the metasurface. This design process is done us-
ing a commercial electromagnetic wave simulator - Lumer-
ical FDTD - which solves Maxwell’s equations in the time-
domain, and Fourier transforms the solution to gain infor-
mation about the optical resonators based on the refractive
index distribution. The reflection properties of a single unit-
cell (nano-pillar) of GaAs resonators sitting on a distributed
Bragg reflector (DBR) stack are calculated using the ‘grat-
ing s-params’ module in Lumerical FDTD at the emission
wavelength of the InAs quantum dots (QDs). We model
the semiconductor alloy composition, refractive index dis-
tribution, the geometry (height, width, pitch etc.) of the res-
onator and DBR as optimization parameters. The properties
of reflection (amplitude and phase) of this metasurface are
used as the figure of merit to optimize for these geometries
and refractive indices. Ideally a reconfigurable metasurface,
we want to maximize the phase shift as a function of the ab-
sorbed pump intensity while minimizing the optical absorp-
tion losses due to the free-carrier generation. These meta-
surface are typically made up low quality factor (Qf ≃ 25)
resonances which by design can change the phase of light
near the resonances by nearly 2π with minimal absorption
losses in the resonator. As the optical pump photons are
absorbed by the GaAs resonators, we create populations of
electrons and holes for a very short (carrier lifetime of 2-
6ps [1, 2]) period of time with in the GaAs resonator. Dur-
ing this time period - the refractive index of the resonators
get modified based on the Drude free-carrier effect such
that more carriers decreases the real part and increases the
imaginary part of the index. We specifically chose GaAs as
the resonator material due to its low-electron effective mass
leading to large index change with minimal pump intensity.
This change in the refractive index as a blue shift in the
resonant wavelength while increasing the absorption of the
same. Thus as the resonance blue shifts through the emis-
sion wavelength of the metasurface (1250nm), the phase of
the light reflected form the metasurface shifts. The optical
pump profile from the spatial light modulator (SLM) which
translates into a refractive profile induces a spatial phase
profile on the metasurface which ultimately forms the ad-
ditional optical momentum steering the emission from the

Figure 1. Experimental Details: A) Measurement setup for PL
steering. The schematic shows how the optical pump pattern on
the 800nm pulse is imaged onto the sample using the spatial light
modulator (SLM). The PL from the sample is imaged in the back-
focal-plane (BFP) of the objective lens to form the output of the
system. The blue arrows indicate propagation of the input image
from the SLM to be de-magnified and projected on to the meta-
surface sample. B) Metasurface Characteristics: Reflection (blue
curve) of the metasurface with respect to gold and emission spec-
tra (orange curve) from the metasurface during continuous wave
pumping at 808nm. The peak in reflection coincides with the peak
in emission from the metasurface. The inset at the top of the graph
shows an SEM image of the fabricated metasurface

embedded InAs QDs.

1.2. Growth and fabrication of the semiconductor
metasurface

The semiconductor metasurface layers are grown using
molecular beam epitaxy. The GaAs substrate is degassed
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prior to growth at 630◦C for 10min under an As over-
pressure. The 15 DBR layers of AlAs (index = 2.92) and
Al0.3Ga0.7As (index = 3.2) was grown on this substrate. The
GaAs (index = 3.35-3.50, based on the optical pump inten-
sity) resonator of 670 nm height with embedded 5 layers
of InAs quantum dots grown inside In0.15Ga0.85As quantum
wells was grown at 490◦C. A pyrometer was used to con-
tinuously monitor the temperature during the growth and a
reflected high energy electron diffraction beam pattern was
used to confirm the formation of the quantum dots. These
epitaxial thin films were used to fabricate the metasurface
resonators using electron-beam lithography with PMMA to
lift-off an alumina hard-mask and a dry (Cl2) etching proce-
dure. See Fig 1B inset for the scanning eletron microscope
(SEM) image of the metasurface at the nano-scale.

1.3. Measurement Setup

The photoluminescence (PL) steering from the metasur-
face was measured as function of the applied grating order
on the SLM at different emission angles by translating a
point detector in the image of the back-focal plane of the
main objective (See Fig S1A). We used a femto-Watt In-
GaAs detector with lock-in amplifier while chopping the
pump beam. We used the Astrella Ti-Sapphire laser source
at 800 nm with 1 KHz repetition rate with 80fs pulse width
to pump the metasurface with 2-3 mJ/cm2 energy density.
We used the Thorlabs Exulus-4K SLM which operates at
refresh rate of 60 Hz with 3840 X 2160 pixels. The reflec-
tion spectra was measured using a Halgoen lamp white light
source and near infrared Ocean Optics spectrometer. The
dark noise of the spectrometer was substrate and the spectra
was normalized to the reflection from a gold substrate. The
PL spectra in Fig S1B was measured by pumping the meta-
surface using continuous wave 808 pump at 1 mW and 100
ms integration time of the same spectrometer.

2. Variational Autoencoder training details
The training set for our VAE [3] consisted of 1D pro-

files generated using periodic Bezier curves, which repre-
sent periodic profiles with arbitrary linear as well as non-
linear variations within each period. To generate the train-
ing set, we randomly choose a periodicity between 48 and
3840 pixels. Within each period, we define a Bezier curve
parametrically as follows:

B(t) = (1−t)3P1+3(1−t)2tP2+3(1−t)t2P3+t3P4 (1)

where P1, P2, P3, and P4 are the four points used to define
the bezier curve, and t is a parameter between 0 and 1. In
our case, we fix P1 = (0, 0) and P4 = (1, 1), and randomly
generate two pairs of points P2 and P3 between P1 and P4.

We generate a database of 50,000 1D profiles, split into
an 80-20 train-test set.

Figure 2. Panels show some example pump patterns generated by
the VAE after training. We see a mixture of low frequency and
high frequency pump patterns, as well as patterns with varying
average intensity

The encoder consists of three standard feed-forward lay-
ers of a 1000, 1000, and 100 units each, while the decoder
mirrors this architecture. Each layer uses a ‘relu’ activation
function [4]. We use a mean squared error loss to quantify
the reconstruction error, with the Kullback-Liebler diver-
gence term defined in the conventional manner.

Using this database, we train the VAE with a latent di-
mension of 3 and using the Adam optimizer [5] with a learn-
ing rate of 0.001. Training is performed on a batch size of
32 for a 1000 epochs. Fig S3 shows sample 1D profiles
generated by the VAE, and the associated input SLM im-
age. We find these images to realize pump patterns beyond
human intuition, and find that some of these patterns result
in significant beam steering.
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