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A. Data Processing and Evaluation
We make publicly available our codebase1, which in-

cludes instructions and config files needed to replicate all
main experiments of the paper. For comparitive purposes,
we implicitly refer in the following subsections to the pub-
lic codebases of OIM2 [8], NAE3 [3], SeqNet4 [4], COAT5

[10], AlignPS6 [9], and PSTR7 [2].

A.1. Standardized Data Format

We produce an intermediate COCO-style [6] format
for all partitions of the CUHK-SYSU and PRW datatsets.
In addition to standard COCO object metadata, we in-
clude person id and is known fields for persons, and
a cam id image field for performing cross-camera evalua-
tion.

This standardization process made it straightforward to
prepare new partitions of the data. In particular, we split the
standard training sets into separate training and validation
sets, and created some additional smaller debugging sets.
This allowed us to pick hyperparameters without fitting to
the test data.

We also standardize the format of retrieval partitions into
three categories: 1) fully-specified format which encodes
the exact gallery scenes to be used for each query 2) format
which specifies queries only, and uses all scenes in the par-
tition as the gallery and 3) format which uses all possible
queries, and all possible scenes as the gallery. We create the
second and third formats because it is otherwise inefficient
to fully-specify the “all” cases.

A.2. Training and Validation Sets

For both datasets, known identity sets between the train
and test partitions are disjoint, making the standard evalua-

1https://github.com/LukeJaffe/GFN
2https://github.com/ShuangLI59/person_search
3https://github.com/dichen-cd/NAE4PS
4https://github.com/serend1p1ty/SeqNet
5https://github.com/Kitware/COAT
6https://github.com/daodaofr/AlignPS
7https://github.com/JialeCao001/PSTR

CUHK-SYSU PRW

Metadata trainval test train val trainval test train val

Scenes 11,206 6,978 8,964 2,242 5,704 6,112 4,563 1,141

Boxes 55,272 40,871 44,244 11,028 18,048 25,062 14,897 3,151

Known IDs 5,532 2,900 4,296 1,236 483 544 424 158

Known Boxes 15,085 8,345 11,623 3,462 14,907 19,127 12,125 2,782

Unknown Boxes 40,187 32,526 32,621 7,566 3,141 5,935 2,772 369

Table 1: Dataset metadata showing how many scenes, boxes, and
person IDs are in each partition.

tion an open-set retrieval problem. To construct the training
and validation sets to mirror the open-set retrieval problem
of the standard train-test divide, we build a graph based on
which scenes share common person identities. Two nodes
(scenes) have an edge between them if they share at least
one person identity in common. In this way, we can easily
split the CUHK-SYSU dataset into a set of connected com-
ponents, and divide those components into two groups for
train (∼80%) and val (∼20%).

Since the PRW dataset comprises video surveillance
footage, this graph has the property that nearly every scene
is connected to another scene via some common person
identity. Therefore, we ignore the top 100 most common
person identities when constructing the graph for PRW, re-
sulting in a partition which is not quite open-set, but should
exhibit similar generalization properties for the purpose of
model development. For PRW, we also divide components
into two groups for train (∼80%) and val (∼20%).

We rename the original train set to “trainval”, and all of
our final experimental results in this paper are from models
trained on the full trainval set, and tested on the full test set
using the standard retrieval scenarios.

A.3. Partition Information

Metadata for the exact breakdown of known and un-
known identities and boxes for each partition is given in
Table 1.
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A.4. Evaluation Functions

Using these standardized partitions, we are able to use
just one function for detection evaluation and one for re-
trieval evaluation, as opposed to separate functions for each
dataset. This also makes it easier to add in method-specific
metrics that can be immediately tested for all partitions.

We note that the current dataset releases for PRW and
CUHK-SYSU have a small number (5 or less) of the fol-
lowing errors: duplicate bounding boxes in a single scene,
repeated person ids in a single scene, and repeated gallery
scenes in a retrieval partition. Although these issues are not
handled correctly by the standard evaluation function, we
exactly replicate the previous erroneous behavior in our new
evaluation function to be certain the comparison against
other methods is fair. We leave correction of the underly-
ing data and evaluation function to future work.

A.5. Augmentation Code Structure

To make use of augmentation strategies in the albumen-
tations library [1], we refactor evaluation to occur on the
augmented data instead of the original data. This allows for
easy inclusion of different resizing and cropping strategies
which we make use of, in addition to a wealth of other aug-
mentations, experimenting with which we leave to future
work.

A.6. Config Format and Ray Tune

For running experiments with our code, we pro-
vide a YAML config format which is compatible with
the Ray Tune library [5]. We specifically support the
tune.grid search functionality by parsing lists in the
YAML file as inputs to this function. This makes it easy
to run ablations with many variations using a single config
file.

B. Additional Implementation Details
Model Details. We set the OIM scalar (inverse tempera-
ture) parameter to 30.0 as in [4], with an OIM circular queue
size of 5,000 for CUHK-SYSU and 500 for PRW. The OIM
momentum parameter is also left at 0.5. For the GFN, the
training temperature parameter is 0.1, and the GFN excita-
tion function temperature parameter is 0.2. During training,
we use a batch size of 12 for ResNet50 backbone models,
and a batch size of 8 for ConvNeXt backbone models.

For the ResNet50 backbone, we freeze all batch norm
layers, and all weights through the conv1 layer of the
model. For ConvNeXt backbones, we freeze only the
conv1 layer of the model. All backbones are initialized
using weights from pre-training on ImageNet1k [7].

We use automatic-mixed precision (AMP), which signif-
icantly reduces all training and inference times. To avoid
float16 overflow, we refactor all loss functions to divide

Detection Re-id GFN

Model Recall AP mAP top-1 ∆ mAP ∆ top-1 mAP top-1

RN50 NAE-FCS 97.6 93.5 50.3 89.4 0.0 +3.5 16.7 78.5
RN50 RCNN-SCS 96.0 93.1 51.1 90.6 +0.1 +3.8 16.3 78.0
CNB NAE-FCS 97.9 94.9 58.7 91.4 +1.3 +3.4 21.0 78.9
CNB RCNN-SCS† 96.0 93.4 58.8 92.3 +1.1 +3.5 20.4 78.5

Table 2: Comparison of model backbone (RN50=ResNet50,
CNB=ConvNeXt Base), NAE vs. R-CNN head for the second
detector stage, and first (stage) classifier score (FCS) or second
(stage) classifier score (SCS) used at inference time. Baseline
model is marked with †, final model is highlighted gray.

before summation when computing mean reduction. This
increases likelihood of underflow, but results in more stable
training overall.
GFN Sampling Strategies. Since we are unable to use the
entire GFN LUT to form loss pairs in any given batch due
to memory limitations, we have a choice about which LUT
embeddings to select for the GFN optimization. By default,
for each query person present in the current batch, we sam-
ple one matching scene embedding and the person embed-
dings for all persons in that scene. In addition, we consider
sampling a “hard negative” scene, defined as a scene which
shares at least one person identity in common with the query
scene, but that does not contain the query person identity.
An ablation for related choices is considered in Section D.

C. Qualitative Analysis
Qualitative examples are shown for both CUHK-SYSU

and PRW in Figure 1. All examples show cases where
the baseline model top-1 match is incorrect, but the GFN-
modified match for the same example is correct. We high-
light examples where global scene context has an obvious
vs. a more subtle impact, and where the query and scene
camera ID are the same or different.

D. Additional Ablations
Model Modifications. We consider how changes to the Se-
qNet architecture impact performance, including usage of a
second Faster R-CNN head instead of the NAE head, and
usage of the second detector stage score instead of the first
stage score during inference. Results are shown in Table 2.

Using the ConvNeXt Base backbone instead of
ResNet50 does not improve detection performance, but it
significantly improves re-id performance, especially mAP,
by 7-8%. Using the first stage score significantly helps de-
tection performance, but it reduces re-id performance.
Image Augmentation. Shown in Table 3, we compare the
Window Resize augmentation to the two cropping methods
used, and a strategy combining the two. We find that the
Window Resize method achieves comparable re-id perfor-
mance with other methods, but much lower detection per-
formance. This may be attributed to the regularizing effect
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Figure 1: Retrieval examples (CUHK-SYSU left, PRW right) from the baseline model where application of the GFN score corrected the
top-1 result. The query box is shown in yellow, a false positive gallery match in red, and a true positive gallery match in blue. In each
scene, the white box in the lower right duplicates the person of interest for easier comparison between scenes. In the top-left and middle-
left, subtle contextual clues (formal wear) help correct the predicted box. In the bottom-left, an obvious contextual clue (interior of same
building) corrects the prediction, despite a 180◦ change in viewpoint of the person. In the top-right, the false positive and correct match
look nearly identical, and the correct box is from the same camera view. In the middle-right, the false positive and correct match have the
same shirt and hairstyle, and the correct box is from a different camera view. In the lower-right, the false positive appears to be a mistake
in the ground truth (should be true positive), but the GFN “helped” by up-weighting a more contextually similar scene.

Detection Re-id GFN

Method Recall AP mAP top-1 ∆ mAP ∆ top-1 mAP top-1

WRS 89.3 87.7 57.3 91.1 +0.9 +4.7 19.6 78.3
RSC 95.9 93.1 55.8 91.0 +0.7 +3.7 18.5 77.6
RFC 95.0 92.7 58.4 91.2 +1.4 +3.4 20.8 77.8
RFC2 95.4 93.1 58.2 91.1 +1.4 +3.8 21.1 78.4
RSC+RFC† 96.0 93.4 58.8 92.3 +1.1 +3.5 20.4 78.5
RSC+RFC2 96.1 93.8 58.7 92.3 +1.3 +3.3 20.8 78.9

Crop Size Recall AP mAP top-1 ∆ mAP ∆ top-1 mAP top-1

256×256 95.3 91.9 51.4 90.1 0.1 3.3 16.7 78.0
384×384 96.3 93.6 56.7 92.0 0.6 3.0 19.6 79.2
512×512† 96.0 93.4 58.8 92.3 1.1 3.5 20.4 78.5
640×640 95.3 92.9 59.6 92.3 1.4 3.4 21.8 79.6

Table 3: Comparison of image augmentation methods (top), and
image crop sizes (bottom). Augmentation methods include WRS
(Window Resize to 900×1500), RSC (Random Safe Crop to
square crop size), RFC (Random Focused Crop to square crop
size), RFC2 (variant of RFC), and RSC+RFC(2) which performs
either cropping method randomly with equal probability. Baseline
model is marked with †, final model is highlighted gray.

of random cropping for detector training.
In addition, we find that Random Safe Cropping alone

results in better detection performance than Random Fo-
cused Cropping alone, but worse re-id performance. This
shows that the regularizing effect of random crops that may
be in the wrong scale is more important for detection, and
having features in the target scene scale is more important
for re-id. Combining the two results in better performance
than either alone for both detection and re-id.
Scene Pooling Size and Embedding Dimension. We an-
alyze choices for the RoI Align pooling size for the scene
embedding head, and choices for the embedding dimension

for both the query and scene embedding heads. Compar-
isons are shown in Table 4.

GFN performance increases nearly-monotonically with
scene pooling size, with diminishing returns for GFN score-
weighted re-id performance. We also note that larger scene
pooling size results in a significant increase in memory con-
sumption, so we use 56×56 by default, which captures most
of the performance gain, with some memory savings.

It is clear that the scene pooling size should be larger than
the query pooling size to ensure that all person information
in a scene is adequately captured. The relationship between
person box size distribution vs. scene size, with the ratio of
respective pooling sizes could be further investigated.

For the embedding dimension, performance also in-
creases nearly-monotonically with size, for both re-id and
the GFN-only stats. Although there are diminishing returns
in performance, like with the scene pooling size, we choose
the relatively large value of 2,048 because it results in little
additional memory consumption or compute time.
GFN Sampling. We analyze choices for the GFN sampling
procedure, with comparisons shown in Table 5. Critically,
we find that all sampling options with the LUT are better
than not using the LUT at all, as shown by both the large
increase in GFN stats, and the contribution of GFN score-
weighting to re-id stats. This is expected but important, be-
cause it shows that batch-only query-scene comparisons are
insufficient (usually just comparing a query to the scene it
is present in), and that LUT comparisons are needed despite
no gradients flowing through the LUT.

Among sampling mechanisms that use the LUT, results
for GFN score-weighted re-id stats were relatively similar,
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Detection Re-id GFN

Pool Size Recall AP mAP top-1 ∆ mAP ∆ top-1 mAP top-1

14×14 96.1 93.5 58.1 91.6 +0.1 +3.3 18.2 77.9
28×28 95.9 93.4 58.5 92.3 +0.7 +3.6 19.7 79.2
56×56† 96.0 93.4 58.8 92.3 +1.1 +3.5 20.4 78.5
112×112 96.1 93.6 58.8 92.4 +1.2 +3.6 22.1 79.8

Emb Dim Recall AP mAP top-1 ∆ mAP ∆ top-1 mAP top-1

128 96.1 93.6 58.0 91.6 0.7 3.8 19.6 77.9
256 95.9 93.4 58.2 92.0 1.0 4.3 20.1 78.3
512 96.1 93.5 58.7 91.8 1.0 4.0 20.0 77.6
1024 96.2 93.6 59.3 92.2 1.1 3.5 20.0 78.0
2048† 96.0 93.4 58.8 92.3 1.1 3.5 20.4 78.5

Table 4: Comparison of pooling sizes for the RoI Align block used
to compute scene embeddings (top) and comparison of the embed-
ding dimension used for both query and scene embeddings (bot-
tom). Baseline model is marked with †, final model is highlighted
gray.

Detection Re-id GFN

Sampling Recall AP mAP top-1 ∆ mAP ∆ top-1 mAP top-1

No LUT 96.2 93.7 57.5 90.8 -0.3 +2.1 13.3 72.8
P1N0 96.1 93.6 59.5 91.9 +1.3 +2.4 21.0 78.7
P1N1† 96.0 93.4 58.8 92.3 +1.1 +3.5 20.4 78.5
P2N0 96.2 93.7 59.1 91.9 +1.2 +3.6 20.9 79.5
P2N1 96.0 93.6 59.1 91.7 +1.2 +3.4 21.1 79.5

Table 5: Comparison of different sampling options for optimiza-
tion of the GFN. PxNy indicates that x positive scenes and y hard
negative scenes are sampled for each person in the batch. No LUT
means we use only batch query and scene embeddings, and no
LUT is used. Baseline model is marked with †, final model is
highlighted gray.

and more trials with more samples per trial are likely needed
to distinguish a standout method.

E. Comparison with CBGM

The GFN module is similar to the Context Bipartite
Graph Matching (CBGM) method from [4] in that both
methods use context from the query and gallery scenes
to improve prediction ranking, although the GFN is used
at inference-time only, and does not need to be trained.
CBGM is more explicit, in that it directly attempts to match
detected person boxes in the query and gallery scenes, at the
expense of requiring sensitive hyperparameters: the number
of boxes to use from each scene for the matching. The au-
thors found that very different values for these parameters
were optimal for the CUHK-SYSU vs. PRW datasets, and
did not provide a clear methodology for their selection be-
sides test set performance. In contrast, we use the exact
same GFN configuration for both datasets during training
and inference, selected separately based on validation data,
and found it to robustly improve performance for both.
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