
Supplementary Material

Self-Supervised 2D/3D Registration for X-Ray to CT Image Fusion

Our supplementary material provides further analysis of

experiments in Appendix A, where we compare our sim-

ulated baseline without domain randomization. Addition-

ally, we illustrate the domain gap between DRR and X-

ray images, followed by visualizations of the registration

error distribution for different variations of our proposed

self-supervised framework. In Appendix B we visualize ad-

ditional samples comparing the overlays produced by the

different state-of-the-art methods considered (Figure 4) and

data samples from our clinical CBCT reconstruction dataset

(Figure 5). We provide further implementation details in

Appendix C.

A. Further Analysis of Experiments

A.1. Simulated Baseline

We compare the simulated DIRN trained without domain

randomization in Table 1, evaluated on real X-ray images

of our test dataset. The SR drops from 66.2% to 10% for

the network trained without domain randomization (using

bone projection style DRR). Domain randomization signif-

icantly improves the performance on real X-ray images, as

they have seen different styles during training. Thus, en-

abling us to have a strong baseline for the comparison with

our proposed self-supervised framework.

mRPD [mm] ↓ SR[%] ↑

Simulated 2.97 ± 0.99 66.2

- DR 3.78 ± 0.83 10.0

Table 1: Comparison of Simulated DIRN with and without

domain randomization evaluated on test dataset with real X-

ray images. The simulated is our baseline which includes

domain randomization and -DR indicates without domain

randomization.

A.2. DRR to Xray Domain Gap

We evaluated our simulated DIRN (includes DR) on the

real X-ray and DRR images for the same start positions

from our test dataset to illustrate the domain gap. As il-

lustrated in Table 2, we achieve similar results to DIRN [3]

mRPD [mm] ↓ SR[%] ↑

DRR Eval 0.27 ± 0.60 99.3

X-ray Eval 2.97 ± 0.99 66.2

Table 2: Comparison of simulated DIRN (includes DR)

evaluated on DRR (DRR Eval) and real X-ray images (X-

ray Eval) from our test dataset for the same start positions.
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Figure 1: Comparison of final registration error using em-

pirical cumulative distribution for DRR Eval and X-ray Eval

of our simulated DIRN (includes DR), indicating the large

domain gap that exists even after the application of domain

randomization.

when the source and target domain are same (DRR Eval).

There is a huge drop in performance of our simulated DIRN

when evaluated on real X-ray images (X-ray Eval). In Fig-

ure 1, we plot the cumulative registration error distribution

for DRR and X-ray Eval of our simulated baseline network.

The shift of the registration error towards higher values for

X-ray Eval from the DRR Eval clearly illustrates the do-

main gap that exists even after the application of domain

randomization.
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Figure 2: Comparison of final registration error using em-

pirical cumulative distribution for different variations of our

proposed framework.

0 2 4 6 8 10
Final mRPD [mm]

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Simulated
 - DR
 + Feature
 + Pixel
 + Pixel + Feature

Figure 3: Comparison of final registration error using kernel

density estimation for different variations of our proposed

framework.

A.3. Ablation of Domain Adaptation Components

We visualize the cumulative distribution and kernel den-

sity distribution of the final registration error in Figure 2 and

Figure 3 respectively for different variations of our frame-

work. Our proposed framework shows a significant shift to

lower registration error compared to the simulated baseline.

The standalone feature and pixel space additions also illus-

trate the performance gains of each component.

A.4. Statistical Significance

We also performed a statistical significance test using a

t-Test on the final mRPD achieved for all our experiments

against our proposed method. We achieve statistically sig-

nificant results for all the cases with a p-value < 0.001.

B. Visualization

B.1. Comparison of Registered Overlays

Figure 4 shows additional examples from our test

dataset, comparing the overlays produced. Each row de-

picts the comparison of the overlay produced from a single

test sample for the different methods considered.

B.2. Dataset Visualization

Figure 5 shows example images from our clinical CBCT

reconstruction dataset which includes the CBCT recon-

structed volume along with the paired X-ray images.

C. Implementation details

C.1. Image Preprocessing

The input images I (includes simulated I
s and real Ir X-

ray images) are center cropped to a size of 480× 480 from

original image size of 640×480. The center cropped image

is resized to 256 × 256 and fed as input to the networks.

We normalize the pixel values using the dataset mean and

standard deviation.

C.2. Network Architecture Details

Our self-supervised network consists of the registration

network DIRN [3], feature adaptation components (Adver-

sarial Feature Encoders and Barlow Twins [9]), and the un-

supervised style transfer network [5]. We use the architec-

ture proposed in the respective original works, with the spe-

cific configuration used for our framework described below.

The registration network DIRN [3] consists of RAFT [7]

architecture for estimating the correspondence between the

fixed If and moving Im images. The RAFT architecture

consists of a feature encoder and a context encoder. We in-

put Im to the context encoder and perform no domain adap-

tation since Im is the fixed style bone projection DRR for

both training and evaluation. We perform all the domain

adaptations on the feature encoder as we would like to re-

place the simulated images If with the real X-ray images

I
r
f during evaluation. Both the feature and context encoder

are based on ResNet blocks [7]. The encoded feature map

from the feature encoder is of the size [256, 32, 32] for both

Im and If . The RAFT uses iterative residual flow estima-

tion for training and evaluation. We set the number of it-

erations for flow estimation to 6 for both training and eval-

uation. We use the PointNet++ architecture [6] for corre-

spondence weighting as proposed in DIRN [3]. The single

scale grouping-based segmentation architecture of Point-

Net++ which can output per-point classification is used. We

replace the final layer with a Sigmoid activation function for
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Figure 4: Additional samples from test dataset with comparison of overlays produced using (a) Optimization-based tech-

nique [8], (b) Simulated (with domain randomization [1]), (c) our proposed method, and (d) supervised [3]. Each row

represents a data sample from the test dataset.

predicting per-point weights in the range of [0, 1]. The fea-

ture projector of the Barlow Twins consists of an MLP with

three hidden layers of size [512, 256, 128] that projects the

encoded feature maps to 128-dimension embedding vector

Z. The feature discriminator of the adversarial feature en-

coder uses patch GAN [2] with a patch size of 8 and input

channel dimension of 64. We use 1×1 convolution to match

the encoded feature map to the input channel dimension of

the patch GAN discriminator. The unsupervised style trans-

fer network based on CUT [5] uses a ResNet based gen-

erator consisting of 9 residual blocks [4] and patch GAN

discriminator [2], with a patch size of 16.
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Figure 5: Exemplar data samples from our clinical CBCT dataset. The reconstructed volume is thresholded to better visualize

the bone contours. Each column represents a reconstructed CBCT volume along with paired set of X-ray images used in

reconstructing the CBCT volume.
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