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1. Contents of the Supplemental Material

The supplemental material contains this pdf. The source
code and the video stabilization results are publicly avail-
able at https://github.com/GlobalFlowNet/GlobalFlowNet

2. Compressibility of Global Motion

Referring to Sec. 2.2 (‘Low-pass Filter Module’) of the
main paper, we observe that the global motion can be re-
constructed to a high degree of accuracy with a very small
number of DCT coefficients (cutoff frequency with magni-
tude less than or equal to 10). This is illustrated in Fig. 1 in
this supplemental document.

3. Architecture: GlobalFlowNet

A more detailed diagram of the teacher-student network
is presented in Fig. 2.

4. Visualization of Global Motion

Some example visualizations of the flow produced by
our network are presented in Fig. 3.

5. Estimation of Affine Parameters from
Global Motion

The parameters of the (partial) affine motion between ad-
jacent frames are estimated in the following manner, start-
ing from the global motion fg obtained from the teacher-
student network described in the main paper:

1. The translations ¢, t, are estimated by computing the
median of the values of fg in the X and Y axes re-
spectively.

2. Let U be a uniform Cartesian grid of the same size as
fs. Let U’ = U + fs. Now U represents the loca-
tion of source points in the source image and U repre-
sents their corresponding locations in the target image.

Let these be converted into polar coordinate systems as
Uip and Uj . We estimate the rotation angle 7 (a pa-
rameter of the partial affine motion) as the median of
differences in the 6 (angular) component of U] , and
U, . Similarly, the scale parameter is estimated as the
median of the ratios of the ! components of U; o and
U, 1’79.

This method of fitting parameters is computationally very
efficient and does not require any iterated optimization.

6. Qualitative Evaluation of Video Stabiliza-
tion Outputs

In the ‘Results’ folder, three videos can be found. These

videos are as follows:
(1) Results.mp4 This video shows a compari-
son of our algorithms GLOBALFLOWNET-AFFINE and
GLOBALFLOWNET-FULL with recent deep learning based
techniques such as ‘Learning Video Stabilization’ approach
(LVS) [7] (which was shown to be faster and superior to
[6]), PwStableNet [8] and the ‘deep multi-grid warping’
(DMGW) technique from [5]. We also compare our results
with two good quality classical algorithms: SteadyFlow
[3] and the ‘bundled camera paths’ BCP approach from [2].
We did not compare with [1] due to lack of availability of
their code or video results. We did not wish to compare
with third party implementations of their technique. For
SteadyFlow, we used results provided by the authors. One
can observe superior stability and lesser geometrical distor-
tions in our technique as compared to others.

In the accompanying video, we have written down our
observations regarding each result when comparing with
other deep learning approaches. In some cases, we also
plot a few salient feature point trajectories in the videos
stabilized by each method. One can observe that the shape
of these trajectories is smoother in our method than other
techniques such as [7].

(2) Ablation.mp4: This video presents a comparison of
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Figure 1: Left: Decay of the magnitude of DCT coefficients of a warp field (averaged across 100 videos with 300 frames per
video) versus frequency magnitude v/u? + v? (for frequency (u, v)); Right: CDF (computed across the same dataset as on
the left) of the proportion of warp field magnitude versus cutoff frequency magnitude.
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Figure 2: Refer to Fig. 1 of the main paper. Top: The teacher component, same as the PWC-Net architecture from [4];
Bottom: Our modified ‘student’ architecture GLOBALFLOWNET. The estimate from each layer in the student as well as

teacher acts as an initial condition for the successive layer.

our Stage 1 and Stage 2 results, viz. GLOBALFLOWNET-
AFFINE and GLOBALFLOWNET-FULL. Since affine trans-
formation is not a good representation for the global motion,
Stage 1 leaves behind some spatial distortions in the stabi-
lized video. These spatial distortions get corrected in the
stage 2. This is demonstrated in this video.

(3) Limitation.mp4: As mentioned in the main paper, the
second stage GLOBALFLOWNET-FULL of our algorithm
will produce sub-optimal results if the area of a single dom-
inant foreground object is large and comparable to that of
the background (multiple small foregrounds do not pose
a problem). In such a case, the motion estimates will be
biased towards either the foreground or the background,
producing motion artifacts. However, multiple small fore-
grounds do not pose a problem, even if their combined area

is large and comparable to that of the background. The
video Limitation.mp4 has a set of results on three videos
to demonstrate this. (For an explanation regarding this phe-
nomenon, please see the next paragraph.) The first video
contains multiple moving objects in the scene, occupying
a large portion of the scene combined. The second con-
tains a single large moving object. The third contains a
very large moving object. One can observe that our sec-
ond stage GLOBALFLOWNET-FULL produces sub-optimal
results in the third video, although it works well in the first
two videos. However, GLOBALFLOWNET-AFFINE pro-
duces good results even with the third video.

In the absence of any independent foreground, the opti-
cal flow is dominantly represented by low frequencies (see
Fig. 1). The foreground motion is an outlier to the back-
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Figure 3: Visualization of Global Motion: In each row, from left to right: source and target images (two consecutive frames
from a video), optical flow between the two image, and global motion between the two images. The global motion is estimated
by GLOBALFLOWNET. In the first and second row one can notice that GLOBALFLOWNET has estimated the global motion
by ignoring the foreground objects as discussed in Sec. 2.3 of the main paper. Notice that the network estimates the global
motion quite well even in the presence of multiple foreground objects. However, in the last row, when the size of a single
foreground object is comparable to the background object the network fails to predict the global motion. This is discussed in

detail in the section below.

ground model. It gets filtered out due to the robust loss
function (Eqn. 1 of the main paper) and because it also re-
quires higher frequency components for accurate represen-
tation, whereas the student network forces a low frequency
representation for the flow due to the Low Pass Filter Mod-
ule (see Sec. 2.2 of the main paper). In case of a single large
foreground of size comparable to the background, the fore-
ground and background motion can get interchanged, lead-
ing to distortions. However multiple small foregrounds with
different motions will still get filtered out, as each of these
foregrounds act as individually sparse outliers to the back-
ground model. This is confirmed by the good performance
in our experimental results on many videos of different cat-
egories having multiple foregrounds (see Results.mp4 in
supp. mat.).
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