
Supplementary –
One-Shot Doc Snippet Detection: Powering Search in Document Beyond Text

Abhinav Java∗, Shripad Deshmukh∗, Milan Aggarwal, Surgan Jandial, Mausoom Sarkar, and Balaji
Krishnamurthy

Adobe Media and Data Science Research Labs, Noida, India
{ajava, shdeshmu, milaggar, jandial, msarkar, kbalaji}@adobe.com

1. Additional Architectural Details

1.1. Feature Extractors.

In this section, we provide additional details about the
backbones in the proposed MONOMER. We discuss the hy-
perparameter choices in the Image Encoder, followed by the
Text Encoder and finally the Layout Encoder. Please note
that the hyperparameters are kept consistent across experi-
ments on all the datasets.

1.1.1 Image Features

The image encoder is a DiT-backbone with encoder-only ar-
chitecture having 4 layers, each containing 4 attention heads
with model dimension of 512. The encoder takes 3 chan-
nel document image resized (using bi-cubic interpolation)
to 224 × 224 resolution which is further cut into 16 × 16
sized patches and outputs a token sequence of length 197.
The 197 tokens are formed as follows – 224×224

16×16 +1, where
the additional token corresponds to the CLS token as in
the original BEiT [1]. We choose a pretrained DiT base
model for our experiments that has a hidden dimension of
768. Since both query image Qinp

i and target image T inp
i

are preprocessed to the same dimension, we obtain two fea-
ture vectors Qv , Tv each of size BS × 197 × 1024, where
1024 is the maximum sequence length and BS denotes the
batch size. Note that the maximum sequence length is a
hyperparameter choice that is chosen based on the maxi-
mum number of text-blocks in the target document. The
encodings are then padded to final vectors Qv, Tv of size
BS × 1024 × 1024 each. The rationale behind doing so
is to conveniently be able to perform the subsequent cross-
attention with different modalities. We can summarize the

*These authors contributed equally to this work

sequence of operations as follows -

Qv = pad(D(Qinp
i )) ∈ R1024×1024 (1)

Tv = pad(D(T inp
i )) ∈ R1024×1024 (2)

where D is the DiT image encoder and pad is the
padding operation.

1.1.2 Text Features

We use a pretrained BeRT-based sentence transformer [5]
that generates 768 dimensional embedding for a given block
of text. The continuous blocks of text in the document are
fed into this encoder to generate token sequence T inp

t , Qinp
t

of dimension BS × textt × 768 and BS × textq × 768 re-
spectively, where textt is the number of text-blocks in the
target document and textq is the number of text-blocks in
the query patch. Additionally, we pad both T inp

t , Qinp
t to

a constant size of BS × 1024 × 768. Unlike all the other
MONOMER parameters, the text encoder weights are kept
frozen. Mathematically, text encoding is represented as fol-
lows –

Qt = B(pad(Qinp
t )) ∈ R1024×768 (3)

Tt = B(pad(T inp
t )) ∈ R1024×768 (4)

where Qt, Tt are the final query and target text features and
B is the BeRT text encoder.

1.1.3 Bounding Box Features

We leverage a ViT-like [6] architecture to encode the bound-
ing box (spatial) information in the target document and
query patch. We implement an encoder-only transformer
architecture with 4 layers, 4 heads and hidden dimension of
1024. It takes bounds of the target T inp

s and query Qinp
s of

size BS×boxt×4, BS×boxq×4, where boxt, boxq are the



number of bounding boxes in target and query respectively.
Similar to the text-encoder, boxt and boxq are padded to
the maximum sequence length of 1024. Weights of this en-
coder are initialized randomly. We denote the bounding box
encoding as follows –

Qs = V (pad(Qinp
s )) ∈ R1024×1024 (5)

Ts = V (pad(T inp
s )) ∈ R1024×1024 (6)

where V is the ViT-like bounding box encoder and Qs, Ts

are the final feature sets corresponding the query and target
respectively.

1.2. Feature Fusion

1.2.1 Symmetric Attention Module.

The symmetric attention module consists of 2 multi-head
attention (MHA) modules each containing 4 heads and em-
bedding dimension of 512. To ensure that the input token
feature dimension matches with MHA’s specifications, the
input sequences are passed through fully-connected layers
to project feature dimension onto dimension of 512. The
outputs of the MHA blocks are concatenated (along last di-
mension) to obtain final token sequence with feature dimen-
sion of BS × 1024× 1024.

1.2.2 Co-Attention and Cross-Attention Modules.

Co-Attention Module contains 3 symmetric attention mod-
ules one for each modality, outputting sequences V V , TT
and SS of length 1024 and token size 1024.

V V = SA(Qv, Tv) ∈ R1024×1024 (7)

TT = SA(Qt, Tt) ∈ R1024×1024 (8)

SS = SA(Qs, Ts) ∈ R1024×1024 (9)

where SA is the Symmetric Attention operation.
Similarly, the Cross-Attention Module consists of 2 sym-

metric attention modules for generating spatio-visual fea-
tures and 2 for attending text over those generated fea-
tures. It generates SqVtTt and StVqTq the dimensions of
which are, once again, length of 1024 and token size of
1024. Finally we concatenate the outputs of Co-Attention
and Cross-Attention blocks to create feature volume Fsim.
Obtain Fsim as follows –

SqVt = SA(Qs, Tv) ∈ R1024×1024 (10)

SqVtTt = SA(SqVt, Tt) ∈ R1024×1024 (11)

StVq = SA(Ts, Qv) ∈ R1024×1024 (12)

StVqTq = SA(StVq, Qt) ∈ R1024×1024 (13)
Fsim = concat(V V, TT, SS, SqVtTt, StVqTq) (14)

where Fsim ∈ R1024×1024 is the final set of features and
are processed as described in the main paper.

1.3. Bounding Box Detection

The Fsim is passed through a linear layer followed by
a sequence of 4 convolutional layers to produce features
which are reshaped to give outputs at 4 different levels as
described in the main paper. Then we apply a standard FPN
[3] to obtain features at a common representation size of
1024. Finally, we generate proposals most similar to the
query through an RPN [2] and subsequently detect bound-
ing boxes using RoI Heads. We choose the default parame-
ters for the RPN and RoI heads (from [4]) –

• RPN NMS threshold = 0.7

• RPN IOU threshold = 0.7 (FG), 0.30 (BG)

• RPN Score Threshold = 0

• ROI NMS Threshold = 0.40

• ROI Score Threshold = 0.05

• Detections per image = 200

• ROI IOU threshold = 0.50 (FG), 0.50 (BG)

where FG, BG are the foreground and background respec-
tively. Note that the bounding box detection for Lay-
outLMv3 baseline is kept exactly the same as the proposed
MONOMER whereas for BHRL, the github implementa-
tion is used.

1.4. Model size comparison vs baselines

On comparing the model sizes of the selected baselines
with our proposed model, we found that BHRL has 48M
parameters but is considerably worse at task performance
compared to LayoutLMv3 (126M ) and MONOMER
(146M ). Further, despite the comparable number of pa-
rameters in LayoutLMv3, our method outperforms it sig-
nificantly (+20% in mAP).

2. Human Evaluation
In this section, we delineate the human evaluation con-

ducted on the generated dataset through the proposed tech-
nique. A summary of the results have been tabulated in Ta-
ble 1. We create 4 dataset split containing 40 samples each
and share each split with 3 human evaluators to report the
metrics. The high recall and precision over all the splits in-
dicates that not only does our method generate high quality
ground truths (87.96%) but is also able to find most of the
target regions (81.07%) in a given document corresponding
to a particular query. This saves a considerable amount of
human annotation costs while maintaining reliability. Fur-
ther, we also note that a substantial number of samples
(48.12%) over all splits are complex and hard to search for
in a document. While this metric is largely subjective, its



Metrics Split-1 Split-2 Split-3 Split-4 Average over Splits

Recall 87.25 71.93 80.74 84.38 81.07
Precision 83.06 87.83 91.41 89.58 87.96
F1 84.28 78.56 85.55 86.48 83.71
% Complex
Pattern 43.33 39.16 80.0 30.0 48.12

% non exact but similar matches over correct
matches highlighted. 79.61 93.07 91.09 86.17 87.48

Table 1: Human Evaluation of the proposed dataset over 4 different splits. The last row indicates the non-trivial nature of
dataset generation through the percentage of examples that are not exactly the same as the query.

AP50 AR50 AP75 AR75 mAP
Heuristic 89.94 41.70 64.81 29.89 44.39
MONOMER 81.59 59.88 73.17 52.78 56.49

Table 2: Performance comparison between data genera-
tion heuristic as a baseline and MONOMER on human-
annotated data

consistency over multiple splits verifies our claim. Finally,
the last row shows that query matching within targets is
non-trivial such that only 12.42% cases where snippet and
highlighted similar regions are exact matches with the rest
of the non-trivial matches containing the same layout but
possibly different variation, text, fonts etc which allows the
model to learn ”advanced one-shot search capabilities”.
Hard samples (question 3 in human evaluation) The
evaluators were asked to decide if a snippet is hard based on
whether its structure is complex - a) the snippet comprises
of a significant number of elements or that the elements are
arranged in a complex layout. Further, they were instructed
to judge a snippet as hard b) if they would find it difficult to
search a given query snippet in some target document.

3. Dataset Generation

Link with real world data We asked the human evalua-
tors to annotate 160 test samples (used in human study) to
compare the performance of our data generation heuristic
(as baseline) to that of our proposed MONOMER. The re-
sults in Table 2 indicate that MONOMER performs better
than heuristic and demonstrates its ability to perform well
on a real dataset, highlighting the effectiveness of the pro-
posed data generation technique to enable MONOMER to
generalize better. It is apparent in comparison with the
heuristic-based baseline in Table 2 that training our model
on this dataset enables us to obtain a more generalized one-
shot detector. We hypothesize that despite our heuristic not
finding an exhaustive set of matches (81% recall) because it
is more stringent and based on layout-based matching, the
data generated by our dataset generation heuristic contains

enough accurate samples for the model to learn snippet sim-
ilarity. We also observe in Table 2 that the average precision
(@50) of the heuristic remains high, and recall is slightly
lower, verifying our hypothesis. Further, at a higher thresh-
old of 0.75, MONOMER performs better in AP75, AR75,
and mAP.
Limitations of dataset generation It is noteworthy to men-
tion that the dataset generation method relies on a heuristic
(metric Eq. 1 in main paper) and consequently encounters
some failure cases. In this section, we discuss some of these
failure cases using qualitative examples. The quantitative
efficacy of our method is already elucidated in Table 1. A
summary of failure cases is presented in Fig 1-Fig 2. Partic-
ularly, in Fig 1 A the crop only contains a single ”Yes/No”
choice option, however it considers elements in the target
with multiple structures within it. This happens as a result
of the threshold penalty and a less strict size heuristic. The
additional elements are considered as single blocks of text
or fillable areas which our metric fails to capture. Further, in
Fig 1 B the heuristic is unable to discern the difference be-
tween a block of comma separated text and option-like text.
This can be attributed to lack of detailed annotations (of low
level elements) in the dataset, typically ”option-like” text is
annotated as a list which wasn’t correctly done in this in-
stance. Lastly, in Fig 2 C the heuristic fails to consider
the length of the text and ends up matching a large block
with a smaller target. This can be regulated using the size
penalty. However, we reiterate that these examples occur
sporadically and the same is justified through a quantitative
analysis in Table 1.

4. Additional Qualitative Results

We add more results produced by the proposed
MONOMER in this section. Please refer to Fig. 3 to Fig.
7 for the predictions.

References
[1] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training

of image transformers. arXiv preprint arXiv:2106.08254,



(a) Crop A

(b) False Positives A

(c) Crop B

(d) False Positives B

Figure 1: False positive examples (1)



(a) Crop C

(b) False Positives C

Figure 2: False positive examples (2)

2021.
[2] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Ma-

lik. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 580–
587, 2014.

[3] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid net-
works for object detection. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 2117–
2125, 2017.

[4] Sébastien Marcel and Yann Rodriguez. Torchvision the
machine-vision package of torch. In Proceedings of the 18th
ACM International Conference on Multimedia, MM ’10, page
1485–1488, New York, NY, USA, 2010. Association for Com-
puting Machinery.

[5] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu.
Mpnet: Masked and permuted pre-training for language un-
derstanding. Advances in Neural Information Processing Sys-
tems, 33:16857–16867, 2020.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.



(a) Pred A (b) Target A

(c) Pred B (d) Target B

Figure 3: Flamingo Forms Examples (1)



(a) Pred C (b) Target C

(c) Pred D (d) Target D

Figure 4: Flamingo Forms Examples (2)



(a) Pred E (b) Target E

(c) Pred F (d) Target F

Figure 5: Flamingo Forms Examples (3)



(a) Pred G (b) Target G

(c) Pred H (d) Target H

Figure 6: PubLayNet Examples (1)



(a) Pred I (b) Target I

(c) Pred J (d) Target J

Figure 7: PubLayNet Examples (2)


