
Supplemental Material
NAPReg: Nouns As Proxies Regularization for Semantically

Aware Cross-Modal Embeddings

1. Ablation on number of proxies
Table 1 shows an abaltion study on the effect of mini-

mum frequency K used to filter proxies from the captions to
the overall performance on Flickr8K. It can be observed that
by just using all extracted nouns (i.e. minimum frequency
1, and proxy count 3874), we get a performance close to the
most optimal proxy count (i.e. 2444). Filtering with a min-
imum frequency of 2 removes some redundant, misspelled,
or rarer nouns giving a 3.1 points improvement over mini-
mum frequency 1 on Rsum for image-to-text retrieval. The
most important observation to note is that even while just
using 1102 proxies (minimum frequency of 8), we get a sig-
nificant improvement over vanilla SCAN, thereby substan-
tiating the value of NAPReg regularization for cross-modal
retrieval.

Table 1: Ablation to evaluate effect of number of proxies on
matching performance on Flickr8k dataset

Min Freq. No. Of
Proxies

Text-to-Image Image-to-Text
R@1 Rsum R@1 Rsum

1 3874 39.2 189.7 54.5 226.6
2 2444 39.2 188.0 56.2 229.7
3 1950 39.1 189.8 53.9 227.1
5 1438 38.5 187.9 55.0 227.7
8 1102 38.5 188.7 53.4 224.2

No NAPReg 0000 32.3 168.9 51.2 216.0

2. Ablation on backbone
In this section, we present the performance of our pro-

posed regularization method for cross modal retrieval with
different textual backbones. In particular, we show aug-
mentation of our method with a transformer based text en-
coder. As can be observed in table 2, with a BERT back-
bone, NAPReg provides a 4.0% improvement on Text to
Image retrieval and 4.4% improvement on R@1 for Image
to Text retrieval with respect to the baseline (SGRAF with
BiGRU and triplet loss). In comparison to NAAF’21 [7],
we show 1.5% improvement on R@1 on Text to Image re-

trieval and 0.3 % improvement on R@1 on Image to Text.
Further, we also present the ensembled backbone (BERT
+ Bi-GRU) results, which shows 2.5% improvement over
NAAF on Text to Image retrieval R@1. We also show per-
formance improvement, when using GloVe textual embed-
dings on SCAN architecture. These experiments demon-
strate the robustness of our proposed regularization towards
different textual encoder architectures.

3. Comparison with Proxy Anchor Loss
Proxy based metric learning was introduced first in the

domain of uni-modal (image-to-image) metric learning by
Proxy-NCA [3]. This method, in its standard setting, as-
signs a unique proxy per class. Consider sample X =
(x1, y1) in which x1 is the data point and yi is correspond-
ing label associated with the data point. In Proxy-NCA, the
data point is attracted towards the class proxy corresponding
to yi and separated from all the other proxies (correspond-
ing to other classes). Recently, inspired by [5], [1] proposed
Proxy Anchor Loss, which introduced an improvement over
the Proxy-NCA by considering the relative hardness of sam-
ples. The formulation of proxy anchor loss is given by
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Where λ1 is the margin, α1 is the scaling factor and P+

refers to the positive proxies. From the above formulation
one can note that, the proxies corresponding to the individ-
ual classes in the dataset act as anchor points. The rela-
tionship between a data point to the corresponding positive
anchor point (proxy) is mutually exclusive, as a data point
cannot belong to two different classes. Adapting existing
proxy based uni-modal metric learning to cross-modal re-
trieval is non-trivial due to the class dependent nature of the
way the proxies are defined. The proposed regularization
NAPReg overcomes this challenge by defining a proxy cor-
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Table 2: Ablation demonstrating performance using BERT backbone

Method Backbone Loss Text to Image Image To Text
R@1 R@5 R@10 R@1 R@5 R@10

SCANi2t BiGRU Triplet 43.9 74.2 82.8 67.9 89.0 94.4
SCANi2t BiGRU Ours 51.4 77.6 85.7 70.8 90.9 95.3
SCANi2t GloVe Ours 54.6 81.7 88.4 74.9 92.6 96.6
SGRAF BiGRU Triplet 58.5 83.0 88.8 77.8 94.1 97.4
NAAF BiGRU Triplet 58.9 83.3 89.0 78.3 94.1 97.7
SGRAF BiGRU Ours 60.0 84.1 90.2 79.6 95.6 98.0
NAAF GloVe Triplet 61.0 85.3 90.6 81.9 96.1 98.3
SGRAF BERT Ours 62.5 87.1 92.1 82.2 95.5 98.0
SGRAF Ensemble Ours 63.5 87.8 92.6 82.2 96.4 98.3

Figure 1: Comparison with proxy anchor loss [1] formu-
lation. Here, P denotes a proxy and S denotes a data
point/sample. Proxy anchor assigns each proxy as an an-
chor, whereas NAPReg (ours) formulation assigns samples
as anchors. Refer to section 3 for related discussion.

responding to each noun occurring more than K times in
the dataset. When defining proxies based on nouns, adopt-
ing a Proxy Anchor based formulation leads to sub optimal
performance. This is due to the fact that in cross-modal sce-
narios, single data point (image) may have multiple positive
proxies (nouns) associated with them, unlike the mutually

exclusive data point - proxy relationship that is observed
in the uni-modal metric learning problem. So, in our pro-
posed regularization term, the formulation is designed to
make each individual data point act as an anchor point. The
objective of the proposed term tries to reduce the distance
between the positive proxies associated with each data point
and increase the separation to the other proxies (as shown in
figure 1. The final formulation of proposed regularization is
given by
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4. Qualitative Analysis on Flickr30K
Here, we provide a qualitative comparison of NAPLoss

against Polyloss [6] . The first five rows in figure 2 show
examples where NAPLoss correctly retrieved the image
for a given caption at top-1. Rows 6-9 show examples
where NAPLoss correctly retrieved in the top 5 whereas
Polyloss[6] did not retrieve the image in the top 5. Rows
10-12 show examples where NAPLoss correctly retrieved
images in top-1, whereas Polyloss[6] retrieved in top-5.

5. Other Hyper-parameters
As discussed in the main paper, we use the same hyper-

parameter values as described in [5]. For completeness and
reproducibility we mention these hyper-parameter values
here: λ1, λ2 = 0.5, positive scale α1, α2 = 2.0, negative
scale β1, β2 = 40.0 and margin 0.1.

6. Discussion on Large Scale Vision-Language
Models

Large scale vision-language models[4] have shown su-
perior performance on most vision-language tasks such as



Figure 2: Qualitative results of top 5 retrieval on flickr30k - (green represents correct retrieval, red represents incorrect
retrieval)

image-to-text retrieval, visual grounding, ref-retrieval, vi-
sual question answering etc. Majority of these methods use
large scale pre-training where the goal is to optimize a con-
strastive objective. Since our proposed regularization cre-
ates shared semantic proxies, these could be easily adapted
to enhance the optimization objective for these methods.
For instance, one potential way to incorporate NAPreg into
CLIP like models is to only use the individual modality em-
bedding to generate the noun context vector. This is due to

the fact that these contrastively trained models do not use
cross attention during evaluation. In other methods such as
[2] which use cross attention modules, an alignment-based
approach for creating noun context vector similar to that of
ours can incorporate the proposed regularization.
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