
Supplementary Materials

1. Constructing 3DBev24k
3DBev24k is a novel dataset constructed by assembling

objects and simulating Lidar physics with Blensor [1]. In
what follows we describe the process of generating Lidar
point clouds and annotations for 3DBev24k.

1.1. Simulated Data

Input: The simulation takes as input a manually con-
structed scene, which is primarily comprised of common
beverage shapes, such as cans, bottles, and cases. The co-
ordinate system of the 3D scenes is x (left/right), y (for-
ward/back), and z (up/down). These are placed on 3D mod-
els of common shelf types that are found in many typical
grocery stores. We manually build scenes to ensure that ob-
ject placement is consistent with the laws of physics. The
input scene is assumed to be “full”, meaning that adding ob-
jects to the scene would result in object placements that are
incongruent with physics (i.e., floating objects etc). Addi-
tionally, the objects are all placed in to “clusters”. A cluster
is defined as a group of objects that are placed in the same
plane in the either the x or y dimension. Within a cluster, all
objects are assumed to share the same class.

Generating Data: Given a ”full” scene, we iteratively
perturb the original scene with the following steps:

1. Choose number of vantage points. Vantage points are
chosen in increments of 30 degrees. Scenes with one
side will have 3 vantage points; scenes with 2 two sides
will have 6 vantage points; scenes with 3 sides will
have 9 vantage points, and scenes with 4 sides will
have 12 vantage points.

2. Randomly perturb camera position and angle at each
vantage point

3. Randomly assign geometric objects to a finegrained
class, within a cluster. For each object type we look
up a set of candidate classes and sample from the can-
didates with a predefined probability distribution. In
nearly all cases we use a uniform distribution over can-
didate classes.

4. Randomly select objects, each with probability p, and
remove them from the scene

5. We sample from a prior distribution over Lidar pa-
rameters (e.g., point density, noise) and simulate Lidar
physics [1].

6. Write labels: semantic segmentation, bounding boxes,
and counts

7. Restore scene to original state

See Figure 4 for an illustration of the simulator as it pro-
gresses.

Output: The simulation outputs a variety of annotations
including bounding boxes, semantic segmentation labels,
and raw counts vectors. Additionally, we output the gen-
erated point cloud to a file.

2. Training Details

In this section we describe settings used during training.

2.1. Preprocessing

We scale each scene’s point cloud to lie in the unit ball
by subtracting each point from the mean, and dividing each
point by the largest euclidean distance from the origin.

2.2. Network Architectures

2.2.1 CountNet3D

CountNet3D consists of a PointNet backbone and a fully
connected regression module. Our PointNet backbone is
built with 8 input channels and 4 linear layers with sizes
[64, 128, 256, 512]. Each layer uses batch norm and relu
activations. We apply a max pooling layer to produce a 512
dimensional global feature tensor. We have 21 geometric
classes, producing a one hot tensor of 21 dimensions. These
two are concatenated into a 533 input tensor to the regres-
sion module. The regressor is a 5 layer, full-connected net-
work with dimensions [512, 256, 64, 64, 64].

2.2.2 YOLOv5

We train a YOLOv5 model for our 2D detector in the image
layer. The model consists of 407 layers and 108,547,000
parameters

1



5.4% 
MAPE
5.4% 

MAPE
7.3% 

MAPE
0.0%


MAPE

Figure 1: Example predictions from CountNet3D on real-world data. (Best viewed in color with zoom in). For each scene
we show the image, the PointBeam proposals, the ground truth, and the predicted counts. We also display the scene-level
MAPE (after rounding). Each beam is given a randomly generated color to highlight the beam regions. We only display the
global ⟨x, y, z⟩ for visualization clarity. We observe that under extreme occlusion, where both 2D and 3D object detectors
are likely to fail, CountNet3D is able to accurately predict the object counts.

Figure 2: An example scene from 3DBev24k. We build a
3D model of the scene (left), and simulate the lidar physics
with BlenSor [1] (right) while also randomizing camera
vantage points, object poses, and noise parameters.

2.3. Hardware & Software

All models are implemented in PyTorch and trained us-
ing four NVIDIA GeForce RTX 2080’s or four NVIDIA
GeForce RTX 3070’s. The PointNet backbone used in our
experiment was implemented by [3]. Our YOLO imple-
mentation was provided by [2].

2.4. YOLO Training and Evaluation

We report our evaluation statistics for our YOLOv5
model on the real-world dataset. While the dataset only
contains 3D scans of 359 finegrained classes, the YOLOv5
model is trained on a much larger dataset covering 3,600
classes. The set of finegrained classes used is a proper sub-
set of the 3,600 seen during YOLO training.

Table 1: YOLO evaluation

Precision Recall mAP@.5

0.615 0.6282 0.5581

3. Geometry Dictionary
We create a curated dictionary that maps a finegrained

class to a canonical geometric types. The geometric types
are:

• twoliter

• 20ozGatoradebottle

• 12ozSlimcan

• 2Oozbottle

• 17ozFlatsidebottle

• 16ozcan

• twelvepack

• 8-12ozCanbox

• 4-16ozCanbox

• sixpack

2



(a) Scene 1: 3D Model (b) Scene 1: Point Cloud

(c) Scene 2: 3D Model (d) Scene 2: Point Cloud

Figure 3: We show two scenes from 3DBev24k. Above we display a screen capture of the 3D model and an image rendering
of the simulated point cloud [1]

• 32ozGatoradebottle

• 24-12ozCanbox

• 6-17ozWrappedflatsidebottle

• 1lBottle

• 16ozIsotonicbottle

• 6-7pt5ozCan

• 12-17ozWrappedflatsidebottle

• 8-20ozGatoradebottle

• 24-17ozWrappedflatsidebottle

• other

A finegrained class describes the semantic class, which
includes both visual and shape semantics. In our retail
dataset, this is specified down to the unique product iden-
tifier (e.g., 049000000443) For example, one finegrained
class might be “coca cola 20oz 049000000443”.

3



Image Render Point Cloud

Figure 4: Instances of our simulated dataset. We display an image rendering of the scene (left) along with the simulated point
cloud (right). Target objects are red and the background is green to facilitate automatic semantic segmentation labelling.
(Top) A “full” scene, or the first iteration of the simulator over this scene type. (Middle) A subsequent iteration, where some
objects are removed. (Bottom) The final iteration of the scene after additional perturbation. Note that the noise and density
of the point clouds is varied, in addition to the vantage point of the camera.

This finegrained class would be mapped
“coca cola 20oz 049000000443” −→ ‘20Oozbot-
tle”. A second example might be “mon-
ster energy 16oz 070847811169” −→ “16ozcan”.

The geometry dictionary does require some manual en-
gineering, but is an important dimensionality step for large
taxonomies. If the number of finegrained classes is small,
this step could be skipped and a one hot encoding could be
computed directly from finegrained classes.

4. Matching Global 3D detections to Fine-
grained Classes

We compare the proposed CountNet3D to state-of-the-
art 3D object detectors trained on the global point cloud.
Because 3D object detectors primarily look for lower reso-
lution, 3D shapes we need a way to match the 3D detections
to more finegrained classes. For the results in Table 2 take as
input 3D, as opposed to RGB+3D, we use a closest point al-
gorithm to match the 3D detections and a finegrained class.

The primary goal of the closest point matching algorithm
was to label the unlabeled points from the output of the 3D

4



Figure 5: Example of the closest matching algorithm. Red
points are centroids from objects that were detected from
the image layer, whose class is given. Blue points are ob-
jects detected by the 3D object detector; their class must be
inferred from the red points

object detection model. Using the already classified cen-
troid from the images we mapped their labels to the un-
labeled 3D detections. With the centroids and the objects
matched, we were able to count all of the detected objects
by class.
The algorithm uses the euclidean distance.√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (1)

where x1= the centroid (the labeled point) and, x2= the
unlabeled point.

Due to the fact that the 2D detections lifted to 3D are not
guaranteed to lie on a constant plane, auto generated cen-
troids, pseudo centroids, were created to ensure equal dis-
tancing between 2D detections and unlabeled points. (see
the figure bellow). These pseudo centroids are generated by
first finding the closest point to the camera in the x direc-
tion, and then generating a centroid for each row all sharing
the same x direction.

In Figure 5 we show an example of the closest point
matching algorithm. As you can see the new centroids are
positioned in the lowest x value. This ensures that the only
points that are mapped together, are points in the same row.

5. Hyperparameter study
We perform a small set of experiments studying the im-

pact of the maximum depth parameter, δ, on the perfor-
mance of CountNet3D. This parameter controls the size,
and consequently the quality of the PointBeam proposals.
In general, we see that small δ values cause the performance
to degrade rapidly. This has the effect that important points

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Delta

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r

MAPE
MSE
MAE

Figure 6: The impact of the maximum depth parameter, δ,
on MAPE, MSE, and MAE. We see that small δ values harm
the accuracy. As δ approaches 1, performances improves.

which penetrated depth-wise into the occluded scene are
now filtered out. When δ = 0.2, the PointBeams roughly
only cover the front-most objects and performance is simi-
lar to the detection-based methods. As δ increases, perfor-
mance increases as more points are included in the Point-
Beam proposal. In our main experiments, we set δ = 0.6.

References
[1] Michael Gschwandtner, Roland Kwitt, Andreas Uhl,

and Wolfgang Pree. Blensor: Blender sensor simula-
tion toolbox. In Proceedings of the 7th International
Conference on Advances in Visual Computing - Volume
Part II, ISVC’11, page 199–208, Berlin, Heidelberg,
2011. Springer-Verlag.

[2] Glenn Jocher, Alex Stoken, Ayush Chaurasia, Jirka
Borovec, NanoCode012, TaoXie, Yonghye Kwon,
Kalen Michael, Liu Changyu, Jiacong Fang, Abhiram
V, Laughing, tkianai, yxNONG, Piotr Skalski, Adam
Hogan, Jebastin Nadar, imyhxy, Lorenzo Mammana,
AlexWang1900, Cristi Fati, Diego Montes, Jan Hajek,
Laurentiu Diaconu, Mai Thanh Minh, Marc, albinxavi,
fatih, oleg, and wanghaoyang0106. ultralytics/yolov5:
v6.0 - YOLOv5n ’Nano’ models, Roboflow integration,
TensorFlow export, OpenCV DNN support, Oct. 2021.

[3] Clement Fuji Tsang, Masha Shugrina, Jean Francois
Lafleche, Towaki Takikawa, Jiehan Wang, Charles

5



Loop, Wenzheng Chen, Krishna Murthy Jatavallabhula,
Edward Smith, Artem Rozantsev, Or Perel, Frank Shen,
Jun Gao, Sanja Fidler, Gavriel State, Jason Gorski,
Tommy Xiang, Jianing Li, Michael Li, and Rev Lebare-
dian. Kaolin, 2019.

6


