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1. Overview

In this supplementary, we provide additional details on
our proposed models and experiments. In Section 2, we dis-
cuss the baseline GGE model [4] and compare its architecte
with our proposed Constrained Optimization with Barlow
(COB) model. In Section 3 we provide the details on the
implementation, datasets used for training and evaluation,
architectural details, and the hyperparameters. In Section
3.1, we discuss the algorithms for our models. Section 3.2
has a detailed analysis of hyperparameters (A, k, step size).
We also extended Section 5.3 from the main paper by pro-
viding more details on the selection of Barlow projector’s
output dimensionality, Np. Additional qualitative and ex-
plainability results are provided in Section 4. Finally, we
provide a list of all the mathematical notations used in the
main paper and supplementary in the glossary, Section 4.1.

2. Brief discussion on GGE-DQ-iter Model.

We use GGE-DQ-iter[4] as our baseline model. This
model consists of an image encoder and text encoder for im-
age and question input, respectively, similar to the UpDn[2]
architecture. The GGE model uses a self-attention network
to get the joint feature representation by combining image
encoded and question encoded features. Finally, a classi-
fier network to predict the answer for the given image and
question input. The GGE-DQ-iter method uses a two-stage
training mechanism to train the model. In the first stage,
the model tries to overcome the question bias, and the sec-
ond stage it tries to overcome the distributional bias in an
iterative fashion. Figure 1 shows the block diagrams for the
baseline GGE-DQ model and our COB model built upon
this base GGE-DQ architecture. A detailed analysis of the
loss function and exact model details are available in the
Han et al. [4].

“Equal contribution.

Ul VoA T -
Nofieark v/ | lassier A ]—‘* Lpcr(A, A|lBa + B,)

Answer prediction
Lo

Dataset bias

Barlow decorrelation
loss

4 o Nabwork v cassiter A Lcu(A, AlBs+ B,)

Answer prediction r
2

Dataset bias

Question-shortcut bias r
(a) COB (our) 1

Figure 1: GGE-DQ v/s COB: (a) shows the baseline GGE-
DQ model [4], (b) shows our proposed COB model built
upon the base GGE-DQ model. In the main paper, we for-
mulate COB and ATB over the cross-entropy loss Lo g for
a generic classification-based VQA model. However, GGE-
DQ uses binary cross-entropy(BCE) as the categorical loss.
It models two biases in its loss: a distribution bias B; and a
question-shortcut bias B,. Conditioned upon these biases,
two BCE losses are computed £, Lo for the question-only
stream and the vision+question stream, respectively. Hence,
to build our COB with GGE-DQ as the base architecture, we
also use BCE loss, as shown in (b). The constraint formula-
tion and balancing of losses remain the same, as proposed in
the main paper, for the generic VQA model. A detailed dis-
cussion on the dataset bias and question-shortcut bias can
be found in Han et al. [4].
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3. Implementation details

Dataset To evaluate our proposed model, we conduct ex-
periments on the standard VQA v2 [3] and language-bias
sensitive VQA-CP v2 [1] datasets. VQA v2 dataset contains
443K train, 214K val, and 453K test question-answer pairs
corresponding to 83K train, 40K val, and 81K test images
sampled from MS COCO datasets. VQA-CP v2 contains
the same data as VQA v2 while overcoming its language
bias by restructuring the answers and questions in the train-
ing and the validation sets, such that prior distribution of
answers for every question type in the train and validation
set differ from each other. The redistribution of data makes
VQA-CP v2 more balanced and robust to language bias.

Architecture: In our model, we use Bottom-Up and
Top-Down (UpDn)[2] features as input for image represen-
tation, and GloVe [7] based word embedding for question
tokens input followed by an LSTM [5] to obtain Question
representation. We use an attention mechanism to combine
visual feature and question representation to obtain joint
representation, followed by a classifier to obtain answer log-
its. For each example (consisting of image, question, and
answer) in the VQA dataset, we obtain a joint embedding of
image-and-question and an answer token embedding based
on the GloVe word embedding model. We use a two-stream
model between the joint representation and the answer rep-
resentation. We project the joint representation and the an-
swer representation to a latent embedding space using a pro-
jector network, as shown in Figure 2 of the main paper. The
projector network has two linear layers, each of dimension
512 output units. The first layer of the network consists of
a linear layer followed by a rectified linear unit followed by
a second linear layer. We add the output of the first linear
and second layers, followed by a normalization layer to get
the final projection embedding. The joint representation is
used for the answer prediction task, and the projected em-
beddings are fed to the Barlow decorrelation loss function.

Decorrelation in Barlow space: In Figure 2, we visu-
alize the correlation matrices in the Np dimensional Bar-
low space where decorrelation loss (L p) is computed. We
observe that, for a randomly initialized network, the cor-
relation matrix shows a higher redundancy, as shown by
the similar values of the diagonal elements as that of the
non-diagonal elements, i.e., a non-prominent diagonal for
(CM, CAandCMA). At convergence, both ATB and COB
models (middle and bottom rows of Figure 2) show (i) a
prominent diagonal in auto-correlation matrices (CM, C4),
which means the feature components share less information
with other feature components and thus being more infor-
mative. (ii) A prominent diagonal in cross-correlation ma-
trix (CM-A), implies that our multimodal Barlow decorre-
lation loss aligns the two modalities (join-embedding and
answers) along the major components while keeping the in-
dividual feature components decorrelated with each other.
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Figure 2: Decorrelation in Barlow space: Figure shows
the auto-correlation and cross-correlation matrices for a
randomly initialized network (top-row), AT B,,—12> model
(middle-row) at convergence and COB model (bottom-row)
at convergence. Barlow decorrelation loss forces the fea-
ture components to share less information with other fea-
ture components by decorrelating them, as can be seen by
higher value diagonal elements in the auto-correlation ma-
trices (C'pq and C 4) at convergence for both ATB and COB
models. Our proposed multimodal Barlow decorrelation
loss (ﬁf{t““) also forces the two modalities to be aligned
along their major component axes while being decorrelated
along the feature dimension, as can be seen by a prominent
diagonal in the cross-correlation matrix (C'aq4).

This alignment of features between the two modalities helps
the underlying joint-embedding to learn the semantics of
the answer space (embedded in the GloVe word embedding
space), which is otherwise not possible by using only the
categorical loss.

Analysis on the amount of pre-training for ATB:
Here, we extend Section 4.2 of the main paper. In Table
1, we present additional VQA results using our ATB model
for different pre-training epochs, n. We evaluate on differ-
ent types of questions sets from the VQA-CP v2 [ 1] dataset,
namely: Y/N, Number, and Other, along with the overall re-
sults on all of these sets.

3.1. Algorithms

To elaborate the formulation and training policies for the
proposed ATB and COB models, we provide the respective
algorithms in Algorithm 1 and 2. All the mathematical nota-
tions are defined in Section 3 and visually placed in Figure
2. We also provide a glossary of all the notations in Section
4.1.



Table 1: Ablation analysis: Applying Barlow loss after cer-
tain epoch. All the results are % answering accuracy on
VQA-CP v2 test set.

Method All Y/N  Number Other
baseline (GGE) 56.08 86.64 22.15 49.38
ATB,, -9 53.64 87.58 1494 4647
ATB,—o 55.19 85.51 20.22  48.89
AT By—4 55.60 86.29 2394  48.21
ATB,,—¢ 56.75 87.57 22.82  49.90
ATB,, —g 56.76  87.81 23.08 49.73
ATB, 19 56.74 87.70  23.14  49.73
ATB,—11 57.16 87.34 2745 49.53
ATB,—12 57.18 87.53 27.19  49.51
ATB,—13 56.80 87.71 2434  49.50
ATB,—14 56.77 87.62  23.85 49.53
ATB, 16 56.59 87.10 2390 49.58
AT B, 13 56.38 87.94  20.98 49.57

ALGORITHM 1. Align then Barlow (ATB)
Input : Batches (V,Q,A), n
Parameters: 07,0, and 0 = {0p,,,05.,}
Result : Learned parameters 6 5,0;,, 6.
Initialize epoch = 0;
while is training do

Compute categorical loss for the current batch,
Lok;

if epoch < n then

Compute gradients Gy, +— agecf and

OLcE.
G, — S5

Update parameters as Ng, 9, < —Gog, 0, ;

else

Compute Barlow decorrelation loss for the
current batch, Lp;

Larp + (Lcp+ Lp);

Compute gradients Gy, +— Ma%,
Gy, 8%% and Gy, < ‘%ag%;

Update parameters as:

Doy 0,05 < —Go,0,.055

end
epoch <+ epoch + 1;

end

3.2. Hyperparameter Selection

Selection of )\ : We perform our experiment for differ-
ent values of A. We observe that for the large value of A the
loss function does not converge, and for a small value of A,
the loss function converges at its optimum performance. We
start A value from 0.1 and increased in its order of magni-
tude up to A = le—8 value. We observe that for A = le—5,

ALGORITHM 2. Constrained optimization with

Barlow (COB)
Input : Batches (V,Q,A), k, step
Parameters: 0 = {0;,01,05,,,05, }, Lagrange
multiplier A

: Learned parameters #, and Lagrange
multipliers A.

Initialize t = 0, A = le — 5;

while is training do

Compute categorical loss for the current batch,

Result

LcEs
Compute the constraint loss over the batch,
(Ct < (LB — H);

Compute gradient Gy +—
Update parameters as Ny x —Gy;
Update (Ct, as: // Required to compute A¢41

8/”‘“”003*
06

if t == 0 then
| C'+« (Lp— k);
else
| C!<+ aC' '+ (1 —a)(Lp — k);
end
Update A, as:

if t%step == 0 then
At+1 ¢ A exp(StopGradient(Ch));
// Update A
else
| Atr1 < A
end
t+—t+1;

end

the model performs best out of all other values of A, as
shown in the Figure 3.

Selection of step size : The tuning of the hyperparam-
eter, step size, (Number of Iteration) plays a crucial role in
training our COB model. The ) value updates after a spe-
cific step size. We perform our experiment with different
values of step sizes (Number of Iteration) starting from step
size 50 to step size 800 as shown in Figure 4. We observe
that step size 100 performs better than other step sizes.

Selection of « : x is the threshold value which controls
when the lambda value starts decreasing. When the « value
reaches the Barlow twin loss value, the constraint value be-
comes zero, and after that, the constraint becomes negative.
The negative constraint value tries to reduce the contribu-
tion of Barlow twin loss in the total loss value. The selec-
tion of k value is a complex task. We need to observe the
pre-trained model and set the « value to the saturation value
of the Barlow loss( where Barlow loss does not change
much). Set the x value near to that saturation value. We
experimented with analyzing the behaviors of x we set with
higher saturation value and lower saturation value as shown
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multiplier A.
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Figure 5: Tuning for hyperparameter «.

in Figure 5. Based on the empirical observation we select
Kk = 2.63 for training COB model. We observe, for lower
saturation value, the performance does not affect much.

Selection of Ny : Np is the output dimensionality of
the Barlow projectors (bg,, ,bo, , ). It is an important hy-
perparameter, as a too-small value to N leads to a smaller
Barlow space where the multiple semantic concepts would
be required to be modelled by the same feature component,
and a too-large value would cause multiple feature compo-
nents to model the same semantic concept. These two cases
result in inferior performances, as shown in Figure 6. Here,
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Figure 6: Effect of the dimensionality of the projector
network on the answering performance: Answering per-
formance on VQA-CP v2 dataset using COB model with
different projector dimensions. Best performing model has
a projector with output dimensionality Np = 512.
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Figure 7: Cumulative energy of top-k PCA components for
different values of Barlow projection layer’s (Barlow pro-
jector’s) output dimensionality.

we compute the answering accuracy for our COB model
with different projector dimensions. We observe that pro-
jector corresponding to Np = 512 yields the maximum an-
swering accuracy, while the smaller value, i.e. Ng = 256,
and the larger values, i.e. Np > 1024, lead to inferior per-
formances, which re-verifies our hyperparameter selection.

To select a good value of N we use a PCA analysis. We
compute the cumulative energy of the top-k eigenvectors on
a subset of VQA-CP v2 test set using our COB model for
different values of projector dimension (Np). From Figure
7, we observe that 512 eigenvectors contains at least 98.8%
of total PCA energy for Ng < 4096. Hence, we chose
Np = 512 for all our experiments. Figure 7 supplements
the Table 3 in the main paper.

Analysis of original Barlow-twins loss: In section 3.4.a
of the main paper, we discuss that Barlow-twins [9] uses
1000 epochs of pre-training, suggesting a flatter loss curve.
Here we plot the pre-training loss curve using the logs of the
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Figure 8: Pre-training loss curve for official implementation of Barlow-twins [9]: (Left) shows the decorrelation loss
during pre-training for each epoch, (right) shows the decorrelation loss on a logarithmic scale for each epoch for a better
visualization of the flatter region. We observe that Barlow-loss takes a longer gradient cycle to converge. Note: To plot these
curves, we use the logs provided by the official implementation of Barlow-twins.

official implementation' of the Barlow-twins for reference, 4.1. Glossary

shown in Figure 8. A glossary of all the mathematical notation used in the

main paper and supplementary can be found in Table 2, 3.

4. Additional Qualitative and Explainability

results:
We provide more qualitative results in Figure 9, along Note: Figures and Tables are
with an additional set of inferior performing results in Fig- . .
ure 10. Similarly, more results on explainability using continued in the next pages.
Grad-CAM [8] have been provided in Figure 11, along with
additional set of results for the cases where COB performs 10fficial implementation of Barlow-Twins []:

similar or inferior to baseline GGE model in Figure 12. https://github.com/facebookresearch/barlowtwins
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Figure 9: More qualitative results: Here we extend the qualitative result section of the main

paper. Each of the image

set/cell shows results for COB model (top-left), with top-5 prediction along with the probability scores corresponding to
them, similarly bottom-left shows the GGE-DQ-iter baseline model prediction and bottom-right shows the top-5 baseline
predictions with their probability scores. The ground truth answer is denoted by the answer with encapsulating green box.
Red bounding box shows the maximal attention region in each image.



What fuels this grill?

What fuels this grill?

GGE-DQ-iter

What color are the walls?

GGE-DQ-iter

GGE-DQ-ter

What does the man have in his hand?

(suorfooara [ o =+
nothing . 0.072
boogie board I 0.015
surfooards | 0.014
water|0.010

boogie board || 0.028
surfboards [0.014
nothing |0.011
surfing|0.008

(©

0.056

GGE-DQ-iter

GGE-DQ-iter

What type footwear is the man in the blue t-shirt and beige shorts wearing?

sandals 0.614
(o) 0247

high heels | 0.011
heels | 0.009
shoes | 0.008

What type footwear is the man in the blue t-shirt and beige shorts wearing?
0640
sandals 0346
heels| 0.005
high heels | 0.004
nothing { 0.003

®

GGE-DQ-iter

What is the plate he's holding made of?

0.268

B
3|
e
8
3

vook [N 0035
|

Taptop 0250
computers ] 0.020

lamp  0.025

book | 0.014

GGE-DQ-iter

What color shirt is this little boy wearing?

yellow and black

yellow and blue

What color shirt is this little boy wearing?
green and yellow 0.469
vetiow | © 186

bluel 0.008

yellow and blue| 0.005

(9)

@

GGE-DQ-iter

What eating utensils are needed for this food?

knite and fork | RN o117

forl 0.093

~

What is the person doing?

0131

alking on phone

posing

talking

@
g
IS

GGE-DQ-ter

How many different colors are the apple?

How many different colors are the apple?

0.361

0337

(k)

o

Who is on the ground?

GGE-DQ-ter

0373

GGE-DQ-iter

What color is the sign to the far left of the photo?

coB

==

GGE-DQ-iter

What geometric shape is the clock?
triangle | NN ©-132
rectangle [N ©-110
round J N oo%°

0.093

What geometric shape is the clock?
rectangle [N o114
triangle NN o©o0%°

(n)

(0)

Figure 10: Similar or Negative results w.r.t. baseline model: Here we explicitly show the results where COB performs
either equal or inferior to the baseline model. Each of the image set/cell shows results for COB model (top-left), with top-5
prediction along with the probability scores corresponding to them, similarly bottom-left shows the GGE-DQ-iter baseline
model prediction and bottom-right shows the top-5 baseline predictions with their probability scores. The ground truth
answer is denoted by the answer with encapsulating green box. Red bounding box shows the maximal attention region in

each image.




(Ques:) Will these people be cooking their food over the candle flame? (GT Ans): no (Ques:) What color socks is this man wearing? (GT Ans): black
Input image GGE-DQ-iter | GT #Rank: 3 COB (our) | GT #Rank: 1
Input image GGE-DQ-iter | GT #Rank: 2 COB (our) | GT #Rank: 1 ‘ 3
=
. |
Pred.: yes Pred.: no Pred.: gray Pred.: black
(Ques:) How many traffic cones are there? (GT Ans): 1 (Ques:) What spilled onto the toilet paper? (GT Ans): teddy bear
Input image GGE-DQ-iter | GT #Rank: 4 COB (our) | GT #Rank: 2 Input image GGE-DQ-iter | GT #Rank: > 5 COB (our) | GT #Rank: 2
x 1
- - i n n
Pred.: 3 Pred.: 2 Pred.: yes Pred.: bear
(Ques:) What is the brand of the front motorcycle? (GT Ans): harley davidson (Ques:) What language is the sign written in? (GT Ans): english
Input image GGE-DQ-iter | GT #Rank: 4 COB (our) | GT #Rank: 3 Input image GGE-DQ-iter | GT #Rank: 5 COB (our) | GT #Rank: 3
Pred.: harley Pred.: harley Pred.: chinese Pred.: chinese
(Ques:) How many green lights are there? (GT Ans): 0 (Ques:) How many benches? (GT Ans): 1
Input image GGE-DQ-iter | GT #Rank: > 5 COB (our) | GT #Rank: 4 ) GGE-DQ-iter | GT #Rank: > 5 COB (our) | GT #Rank: 4
Pred.: 3 Pred.: 3 ) : .
(Ques:) What color is on the front of hIS shorts7 (GT Ans): (Ques:) What number is on the building? (GT Ans): 2
mput image GGE-DQ-iter | GT #Ran cos (our) | GT #Rank: 5
- - ¥ e e
Pred.: white Pred.: black Pred.: 3 Pred.: 0

Figure 11: More explainability results: Here we extend the explainability results of the main paper. For each image set/cell:
(top-text) is the input question along with the ground truth (GT) answer; left-image is the input image middle-image is
the Grad-CAM [&] heatmaps computed by the baseline GGE-DQ-iter model overlaid on the original image; right-image is
the overlaid Grad-CAM heatmap computed by COB; GT #Rank denotes the rank of the ground truth answer in the top-5
prediction by the respective models. ‘Pred.” at the bottom of the middle and right images denotes the predicted answer with
the highest probability score by the respective models.



(Ques:) Is the meal for a toddler or adult? (GT Ans): adult (Ques:) Are all the cabinets white? (GT Ans): no

Input image

GGE-DQ-iter | GT #Rank: 1 COB (our) | GT #Rank: 1

Input image GGE-DQ-iter | GT #Rank: 1 COB (our) | GT #Rank: 1
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Input image GGE-DQ-iter | GT #Rank: 1 COB (our) | GT #Rank: 2

Pred.: cloudy Pred.: sunny Pred.: sking Pred.: balance
(Ques:) What is the person carrying? (GT Ans): ski poles (Ques:) What color are the lights above the counter? (GT Ans): white
Input image GGE-DQ-iter | GT #Rank: 1 COB (our) | GT #Rank: 3
Input image GGE-DQ-iter | GT #Rank: 1 COB (our) | GT #Rank: 3 , F
- - . - -
-
Pred.: ski poles Pred.: skis Pred.: white Pred.; green
(Ques:) What color is the airplanes tail in the front? (GT Ans): red (Ques:) What color is the pitcher that holds the utensils on the counter? (GT Ans): blue
Input image GGE-DQ-iter | GT #Rank: 2 COB (our) | GT #Rank: 4
Input image GGE-DQuiter | GT #Rank: 3 COB (our) | GT #Rank: 4

‘—‘.

Pred.: white Pred.: white and red

Pred.: green Pred.: green

(Ques:) How many pillows are on the bed? (GT Ans): 1 (Ques:) What color socks is the closest person wearing? (GT Ans): white
Input image GGE-DQ-iter | GT #Rank: 4 COB (our) | GT #Rank: 5

COB (our) | GT #Rank: 5

Input image GGE-DQ-iter | GT #Rank: 2

Pred.: blue Pred.: black

Figure 12: Explainability results when COB performs similar or inferior to baseline (GGE-DQ-iter) model: We observe
that for the cases where the COB performs inferior to the baseline, the COB model still localizes either the same salient
regions or better. This property of better salient localization also results in an improved CGD scores obtained by COB in
comparison to all other state-of-the-art baselines, as discussed in the main paper. For each image set/cell: (top-text) is the
input question along with the ground truth (GT) answer; left-image is the input image middle-image is the Grad-CAM [§]
heatmaps computed by the baseline GGE-DQ-iter model overlaid on the original image; right-image is the overlaid Grad-
CAM heatmap computed by COB; GT #Rank denotes the rank of the ground truth answer in the top-5 prediction by the
respective models. ‘Pred.” at the bottom of the middle and right images denotes the predicted answer with the highest
probability score by the respective models.



Table 2: Glossary of notations: Definition of the notation use in the main manuscript and supplementary.

Notation Meaning Notation Meaning
pveAa Distribution of input image question and an- sy and s Two complementary samples sampled from
swers. D¥, that makes a positive pair. In Barlow twin
DV Distribution of input images. [9], these are two different augmentations of
D Distribution of input question. the same image.
DA Distribution of input answers. B Encoded representation of s; using the en-
dy An instance sampled from DV @4, indexed by coder e,(.)
k. S A mini-batch consisting of n;, different in-
Vg An instance sampled from DV'. stances of (s3).
qk An instance sampled from D?. bo, A non-linear projector from encoded represen-
ax An instance sampled from D4, tation space e4(sx) to Barlow space, parame-
Ny Number of samples in a mini-batch. terized by learnable parameters 6.
\%4 A mini-batch of n; different instances (vy) sz A non-linear projection of encoded represen-
sampled from DV . tation e (sy) in the Barlow space.
A mini-batch of n, different instances (g;) S° A mini-batch consisting of n; different in-
sampled from D<. stances of (s%).
A A mini-batch of n; different instances (ay) .S and Ss Two complementary batches consisting of
sampled from D4, positive pairs, s; and sy for k samples in
€y Pre-trained image encoder, parameters not up- mini-batch.
dated during training. SY and S Barlow projections of the two complementary
€q Pre-trained language encoder, parameters not batches, S, Ss.
updated during training. Norm(.) Batch normalization function [6].
fo, Joint network with learnable parameters 0 ; c() Correlation between two batches.
m£ A sample in the joint image+question embed- cs Correlation matrix between two complemen-
ding space. tary batches S? and S5.
Mf A mini-batch of n; different instances (m£ y ‘andj 1 and j indexes the different feature compo-
sampled from DM, ; nenFs of the projected feature ve.ctor s, s
Dy Distribution of samples () in the joint em- ¢ A single element of the correlation matrix
bedding space. s indexed by (i, ). g
lo, A non-linear projection layer from joint em- Ly Barlow decorrelation loss for unimodal D~ in-
bedding space to answer logit space. put space.
mfc Predicted answer logits. €q Pr(:,i-trazlngd }angua'ge. encoder, parameters not
M! A mini-batch consisting of n; different in- updated during traming. o
stances of (ml,) A® Encoded answer representation for the mini-
Lck Cross-entropy loss, in general Categorical batch A, using answer encoqer eal.). N
loss. For GGE [4], it is binary-cross entropy Vv Encoded image representation for the mini-
loss batch A, using answer encoder e,(.).
Ng Dimensonality of space in which Barlow Q4 Encoded question representation for the mini-
decorrelation loss is computed. batch Aj using answer encoder ch.(')'
I Identity matrix in real-value space (R), of size 0z, A non-linear pr(l)JectorJ{[rom the joint represen-
(NgNp). tation space M*' € D™ to Barlow space, pa-
DB x DB A distribution space of matrices C' computed rameterized b_y learnal?le parameters 6/, .
between samples in DB cM Auto-correlation matrix computed on the bar-
° . . 1
D5 a modality specific distribution: For answers low projection (bgy,, (-)) of the batch (AM").
and joint representations, it is D4 and DM re- be B4 A non-linear projector from the encoded im-
spectively. age representations A® to Barlow space, pa-
Sk An instance sampled from DS. rameterized by learnable parameters 65 , .
S A mini-batch of n; different instances (sx) cA Auto-correlation matrix computed on the bar-
sampled from DS low projection (bos, ()) of the batch (A%).
€s Modality specific encoder. For questions, an- cMA Cross-correlation matrix computed between
swers and images it is e, e, and e, respec- barlow projected joint-representations and the
tively. encoded answer representations.
L‘g A Barlow decorrelation loss, where O denotes

the input modalities.




Table 3: Glossary of notations: Definition of the notations used in the main manuscript and supplementary. (Continuation

of table 2.)
Notation Meaning Notation =~ Meaning
LK A unimodal Barlow decorrelation loss for joint A A learnable Lagrange multiplier to weight cat-
image-question embedding space (D). egorical loss Lcog and Barlow decorrelation
LA A unimodal Barlow decorrelation loss for an- loss Lp.
swer space (D). K It is a tolerance hyperparameter to control the
E/gl““ A multimodal Barlow decorrelation loss be- change in ), give the value of Barlow decorre-
tween the joint image-question embedding lation loss L p at iteration ¢.
space (DM) and answer space (D). C Barlow constraint defined as difference be-
Ly Overall Barlow decorrelation loss. tween Lp and k. When it becomes zero the
Lail,,,. Baseline (naive) implementation of overall change in A becomes negative. This subse-
(categorical + Barlow decorrelation) losses. quently forces the dynamic weight A assigned
n Number of pre-training epochs (with categor- to constraint to decrease.
ical loss L¢ i) before applying Barlow decor- Cy Constraint C at iteration t.
relatin loss (L p), in Align then Barlow (ATB) At value of \ at iteration ¢.
formulation. Lai,,,» Lagrangian form of overall constrained opti-
Lo, Overall loss formulation for ATB training pol- mization Lajigop-
icy. AN Change in A in iteration ¢.
Lalicos  Our overall constrained optimization formula-

tion (i.e. categorical loss constrained with Bar-
low (COB) decorrelation loss formulation).
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