Method Backbone Model Optimizer LR Data Aug Cold/Warm Initial / Query Size Subset
Core-Set [34] VGG16 RMSProp  0.001 ? cold 5,000/ 5,000 X
VAAL [37] VGG16 SGD 0.01 v ? 5,000/ 2,500 X
BADGE [4] ResNet18/VGG11  Adam 0.001 X cold 100/ 100 X
100/ 1,000 X
100/ 10,000 X
LLOSS [42] ResNet18 SGD 0.1 v ? 1,000/ 1,000 10,000
TA-VAAL [15] ResNetl8 SGD 0.1 v cold 1,000/ 1,000 10,000
CoreGCN [8] ResNet18 SGD 0.1 v cold 1,000/ 1,000 10,000
ISAL [24] ResNet18 SGD 0.1 v ? 1,000/ 1,000 X

Table 2: Experimental settings of state-of-the-art active learning.

A. Active Learning Methods

Selection strategies for active learning can be roughly
categorized in (a) uncertainty-based sampling, (b) diversity-
based sampling, and (c) combined approaches.

Uncertainty-based sampling. A classifier’s uncertainty
about a particular data point’s prediction, directly relates to
the lack of knowledge and thus the necessity for ground-truth.
Uncertainty can, for instance, be measured by posterior prob-
abilities [23, 39], the margin between the first and second
most likely class [14, 32], or the entropy of the entire predic-
tion [35]. By using the predicted output directly, uncertainty
can also be estimated based on dropout neural networks [9]
with Monte Carlo integration [27]. Yoo and Kweon [42], in
turn, train an additional model to estimate the prediction’s
loss and most recently, Liu et al. [24] selects samples with
the influence function which can approximate the change in
model performance caused by newly added sample.

Diversity-based sampling. Additionally, sample diver-
sity has been shown to be crucial for active learning as
well [34, 37]. Core-Set [34] formulates active learning as
coreset selection [1] to increasing diversity in a query batch,
which can be proven optimal if the number of classes is
small. By approximating the k-Center problem [6], Sener
and Savarese [34] show that their approach is also effec-
tive in practice performing image classification. However,
performance suffers for larger number of classes and high-
dimensional data, which Sinha et al. [37] set out to address
using variational autoencoders [17] in a conceptionally simi-
lar setting as generate adversarial networks (GAN) [10] to
discriminate between labeled and unlabeled samples.

Combined approaches. Most recent research, however,
attempts to strike a balance between sample diversity and
uncertainty of the classifier. As an example, Kim et al. [15]
propose to embed the predicted loss of a task learner [42]
on the latent space of VAAL [37] via “Ranking Condi-
tional GANs” [33]. BADGE [4] estimates the gradient re-
garding parameters in the final layer and uses k-means++

to simultaneously capture samples with high uncertainty
(large gradients) and high diversity (more diverse gradi-
ent directions). The same authors have further extended
this concept to a more general algorithm [3] via Fisher in-
formation matrices [38]. CoreGCN [8], in turn, exploits the
characteristic of information sharing in Graph Convolution
Network (GCN) [18].

B. Backbone Architecture

Table 3 summarizes the network definitions of the back-
bone architectures as used by recent active learning strategies.
For most approaches, the exact architecture can be derived
from the publication itself or from open-source implemen-
tations provided by the original authors. As mentioned in
the main part, it is of utmost importance to carefully inspect
and adapt implementations for a comparative evaluation. For
BADGE, for instance, we observe that while the publication
mentions the use of VGG11 the provided implementation [2]
uses VGG16. Also, the architecture of the used ResNet18
differs from the other strategies and, thus, also from the
original implementation as described by He et al. [11]. The
number of filters in the convolutional layers is only a quarter
of those in the implementations of TA-VAAL, LLOSS, and
CoreGCN. In order to achieve reliable and comparable re-
sults, consistency of the backbone implementation is crucial.

C. Cold Start and Warm Start

Lang et al. [22] find that the difference between
“cold starts” and “warm starts” quickly diminishes during
training of AL methods. To verify this observation, we train
all five AL methods on the CIFAR-10 dataset with both vari-
ants. Fig. 10 shows the results. With few training samples,
the variance within a method is high and, thus, significantly
differs between “cold starts” and “warm starts”. As an exam-
ple, at 3k labeled samples, Entropy ranks first when trained
with “warm starts”, but barely improves over Random with
“cold starts”, ranking fourth. While there are clear differences
in the early training stages, the difference between “cold”



Method Type

Network Architecture

Core-Set [34] VGGxx VGG11, VGG13, VGG16, and VGG19 as proposed by Simonyan and Zisserman [36].
VAAL [37] ResNet18 No details specified. No implementation available.
VGG16 As proposed by Simonyan and Zisserman [36].
LLOSS [42] ResNet18 As proposed by He et al. [11]:
TA-VAAL [15] conv 64 — conv 64 — conv 64 — conv 128 — conv 128 — conv 256 — conv 256 —
CoreGCN [8] conv 512 — conv 512 — avgpool
BADGE [4] ResNet18 conv 16 — conv 16 — conv 16 — conv 32 — conv 32 — conv 64 — conv 64 —
conv 128 — conv 128 — avgpool
VGG11 (Paper) No details specified.
VGG16 (Code)  As proposed by Simonyan and Zisserman [36].
Table 3: Comparison of backbone architectures of state-of-the-art active learning strategies.
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Figure 10: Comparison of “cold starts” (dashed lines) and
“warm starts” (solid lines) for different AL methods.

and “warm starts” quickly fades away. With an increasing
number of training samples, the accuracy curves of both
types run almost parallel to each other. However, we find
that “warm starts” have two major advantages over “cold
starts”. First, training requires less time and is computation-
ally more effective. Second, “warm starts” stabilizes active
learning as explained in Section 2.2.1 and, thus, allows to
eliminate a crucial source of randomness.

D. Early Stopping

The number of training epochs brings randomness to
the training process and can influence a comparative eval-
uation. Thus, a popular choice is to consider the num-
ber of training epochs as hyperparameter. As an example,
Yoo and Kweon [42] have identified 200 epochs as a suitable
configuration for learning ResNet18 on CIFAR-10, where
the model is fully trained but does not overfit yet. As our
experiments center over this exact configuration, we use this
widespread setting [8, 15, 42].

In this section, we show the influence of using early
stopping in comparison to a fixed number of epochs. Early
stopping adjusts training to the necessities of the currently
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Figure 11: Analysis of different training modes.

The performance of BALD, BADGE, and Entropy con-
verge and become more similar to each other with early
stopping than with 200 training epochs. Thus, the order can
change in the sense that AL methods appear on a par. In
Fig. 12, we inspect the number of training epochs when early
stopping is triggered. None of the training cycles exceeds
200 epochs, stopping in the range of 162 to 198. Conse-
quently, our fixed limit of 200 epochs ensures that the model
is fully trained for all considered methods and all active learn-
ing cycles. While overfitting may occur, the extent is limited

175
170
165

Badge BALD CoreSet Entropy Random

Figure 12: Training epochs of per cycle using early stopping.
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Figure 13: Analysis of active learning performance on CIFAR-100.

and the benefit of a leveled playing-field prevails. Early stop-
ping can speed up the active learning process on the expense
of a more variable experimental setup. We thus recommend
selecting a fixed number of training epochs when conducting
active learning evaluations, suitable for the used architec-
ture and dataset, to ensure all methods yield a fully-trained
methods irrespective of the early-stopping parameterization.

E. Model/Method Initialization (CIFAR-100)

As described in the main part, we also analyze the in-
fluence of initialization sets and model initialization on
CIFAR-100. Fig. 13a shows pair-wise penalty matrices of
three different init sets on CIFAR-100. For the second ini-
tial seed, LLOSS (= 0.09) sightly outperforms LC (& 0.12),
while using the first and the third seed LC outperform
LLOSS distinctly. Similar observations are obtained for
model initialization as presented in Fig. 13b. Hence, the
conclusion drawn in Section 2.2.1 based on CIFAR-10 also
holds for CIFAR-100: Init-set seeds and model initialization
can change the ranking of AL methods.

F. Non-/Deterministic Computations

In Fig. 14, we show the accuracy progression for the
experiments on deterministic and non-deterministic compu-
tations as presented in Section 2.2.2. For non-deterministic
training, the curves for Entropy and BADGE are very close,

while for deterministic training, the two curves start off
similar but diverge from 7k labels on: Entropy begins to

outperform BADGE and ends as the strategy with the best
performance overall. Interestingly, for BALD and ISAL
there hardly is a difference between deterministic and non-
deterministic training.

G. Query-Batch Size (CIFAR-100)

We additionally run experiments on CIFAR-100 with
query-batch sizes: 1,000, 2,000, and 4,000. As shown in
Fig. 13c, for 1,000 samples, LLOSS (& 0.06) sightly outper-
forms LC (& 0.14), while when using 2,000 and 4,000 sam-
ples, LC outperform LLOSS. Moreover, the performance of
ISAL fluctuates significantly for different query-batch sizes.
Our experiments on CIFAR-100 further demonstrate that the
ranking of AL strategies varies with the query-batch size.

H. Subset Sampling (CIFAR-100)

Moreover, we investigate the effect of sub-sampling on
CIFAR-100 and find that also here the ranking of AL strate-
gies changes. In Fig. 15, we see that the performance of
LLOSS and ISAL fluctuates significantly, but for LC, En-
tropy, and BADGE the results are better with sub-sampling
than without. Note, that on CIFAR-10, we observe the op-
posite. We suspect that sub-sampling adds diversity at each
round’s selection process for datasets with large number of
classes. For datasets with small number of classes, such as
CIFAR-10, in turn, the limited size of selectable samples
outweighs the gained diversity.
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Figure 14: Comparison of non-deterministic (dashed lines)
and deterministic computations for different AL methods.
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Figure 15: Effect of sub-sampling on CIFAR-100.
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Figure 16: CIFAR-10 with different imbalance ratios.

I. Imbalanced Datasets

For investigating the effect of imbalanced data on active
learning strategies, we construct an imbalanced dataset based
on CIFAR-10 and conduct experiments, using the same ex-
perimental settings as described in Section 2.

Dataset construction. We construct the imbalanced
datasets as proposed by Kim et al. [15] and split CIFAR-10
into two halves, A and B, containing five classes each. One
half (A) is kept as is, while we randomly sample inputs from
the other half (B) up until we reach the predefined imbal-
ance ratio, which is defined as the ratio of the first half and
the sub-sampled “half”, 4/B’. This way, we construct two
imbalanced datasets with a ratio of 10 and 100, denoted as
iCIFAR-10;¢ and iCIFAR-101¢0, respectively.

Evaluation. We use the balanced accuracy (BACC) [7]
to more reliably measure performance on the imbalanced
datasets. Based on these results, we then generate pair-wise
penalty matrices for analyzing the different active learning
methods, that are depicted in Fig. 16 for (a) iCIFAR-101¢

and (b) iCIFAR-10;p. As also corroborated by Munjal et al.
[25], AL methods show a varying degree of change in dif-

ferent imbalance settings, which is also noticeable in the
statistic analysis. As an example, the performance of Core-
Set and ISAL fluctuates significantly for the two different
imbalanced ratios. For balanced CIFAR-10, LC (& 0.01)
outperforms Entropy (& 0.04) while the ranking order con-
verts on iCIFAR-101¢g.

J. Scalability to TinyImageNet

Next, we study the performance of active learning on a
large-scale dataset. TinylmageNet is a subset of ImageNet,
containing 200 classes with 500 images per class. In contrast
to our experiments on CIFAR-10 and CIFAR-100, here we
use ResNext50 [41] as a backend model. We conclude that
AL strategies have different scalability to TinyImageNet.
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Figure 17: PPM on TinylmageNet.

We again leave BADGE out and report results for the
remaining approaches as pair-wise penalty matrix in Fig. 17.
Interestingly, Core-Set ranks best (& 0.03) while BALD and
Entropy fall behind jointly (& 0.073), although for small-
scale datasets its has been the other way around. We specu-
late that this is also attributed to the difference in uncertainty-
based and diversity-based methods.

K. Social impact

The perhaps largest and most controversial aspect of ac-
tive learning is its ecological footprint: We are trading la-
beling costs for computation, that is, we invest more com-
putational resources to get along with as little labeled data
as possible. While this makes sense from a pragmatic point
of view, active learning causes a significant number of ad-
ditional computations. Moreover, our work is particularly
resource-intensive as we are evaluating multiple different
aspects and settings of an already resource-intensive concept,
enlarging the footprint even further.

We have conducted our experiments on NVIDIA A-100
and NVIDIA RTX-3090 GPU cards and have consumed
about 3,900 GPU hours in total. This amounts to an esti-
mated total CO2 emissions of 594.75 kg COzeq when us-
ing Google Cloud Platform in region europe-west3.
However, our university consumes 100 % renewable-energy,
such that our specific COs emissions for the project
is 0.52 kg COzeq only. Estimates are conducted using the
“Machine Learning Impact Calculator” [21].



