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We have provided additional qualitative results for frame
interpolation as well as downstream applications in supple-
mentary video available using this web link (link).

1. Ablations
In Tab. 1, we present a detailed ablation study of the

proposed architecture design in terms of the skip connections,
strides and loss functions. In addition to the brief insight
provided in the main text, we explain each of them in detail
next. We conduct all the ablation studies on the Vimeo-90K
dataset.

Backbone Architecture In this work, we propose us-
ing 3D convolutions that model space-time relations for
improved frame interpolation. To verify this hypothesis, we
train a video interpolation network using 2D convolutions
instead, and present the results in Tab. 1a. While training 2D
Resnet, we concatenate RGB channels of the input before
feeding into the network. We observe that the R2D-18-2I
baseline, which uses a 2D ResNet-18 encoder decoder with
2 input frames (C = 1) performs worse than 2D-R18-4I
baseline, which uses 4 input frames (C = 2) justifying the
need for a larger input context. Next, our proposed archi-
tecture 3D-R18-4I which uses 3D convolutions along with
4 inputs, clearly outperforms both these baselines by 1.3
and 2.3dB, respectively. This indicates the importance of
temporal modeling for the task.

In Fig. 1, we present a more detailed ablation about the
effect of input context (C) on the performance of interpo-
lation. From Fig. 1, we observe that for both 2× and 8×
interpolations, using two input frames (C = 1), one each
from past and present is sub-optimal, as it fails to accurately
reason about complex motion profiles and occlusions. Fur-
thermore, for 2× interpolation, we found that a value of
C = 2 gave the best result, and beyond that the performance
saturates. This is because the outer frame generally contain
less useful information for interpolation and in some cases
might contain significant scene shifts which hurts the inter-
polation accuracy. In the case of 8× interpolation, the time
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Figure 1: Effect of Input Context Comparison of the effect of input context,
C, for video frame interpolation. For 2× interpolation, we observed that
a value of C = 2 which corresponds to using 4 input frames, 2 each from
the past and future, gives best results. Beyond C = 3, we observe no
further improvements. For 8× interpolation, a value of C = 3 gave the
best accuracy.

gap between the frames is tinier, so we find that a value of
C = 3 performs the best, while any larger value of C hurts
the accuracy.

Choice of Fusion Tab. 1b compares and reports the differ-
ent choices for the skip connection (in Figure 2 of the main
submission) used for combining features across encoder and
corresponding decoder. No fusion corresponds to having
no skip connection between the layers of the encoder and
decoder. While fusion - add corresponds to adding the fea-
tures from the encoder to the decoder, fusion - concat refers
to concatenating the corresponding feature maps along the
channels. We find that using some kind of feature trans-
fer across encoder and decoder is essential, than having No
fusion (PSNR of 36.11 vs. 35.1), as the complementary
information learnt in the low level and high level features
needs to be aggregated for accurate interpolation. We settle
on using fusion - concat in our final model as it gives better
performance than fusion - add.

Temporal Striding Striding or pooling in CNNs are
known to remove lot of fine level details in images, which are

https://tarun005.github.io/FLAVR/
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Model PSNR SSIM

R2D-18-2I 33.98 0.966
R2D-18-4I 34.97 0.967
R3D-18-4I 36.3 0.975

(a) Effect of encoder arch.

Model PSNR SSIM

No fusion 35.1 0.9713
fusion - add 35.7 0.9737
fusion - concat 36.3 0.975

(b) Type of feature fusion

Model PSNR SSIM

w/o stride 36.3 0.975
w/ 2x stride 35.4 0.961
w/ 4x stride 35.21 0.96

(c) Effect of Temporal strid-
ing

Model PSNR SSIM

L1 Loss 36.3 0.975
L2 Loss 35.3 0.965
Huber Loss 35.3 0.964
L1+VGG Loss 35.91 0.962

(d) Effect of loss function

Table 1: Ablation results for FLAVR architecture on (a) different backbones, (b) fusion methods, (c) temporal striding, and (d) loss functions.

(a) Overlayed inputs (b) Activation w/
gating

(c) Activation w/o
gating

Figure 2: Visualization of attention weighted feature maps (a) The
overlayed input frames. (b) The feature map of the channel with the highest
attention weight in the network with feature gating. (c) The same feature
map without using the gating module. We observe higher activation (red) in
(b) along the motion boundaries. Best viewed in color.

essential for generative tasks like frame interpolation. We
verify this with experiments using 2×(1/2×) and 4×(1/4×)
temporal striding in the encoder(decoder), and observe from
Tab. 1c that the performance decreases from 36.3 to 35.2
with larger temporal striding. We conclude that temporal
striding hurts, and use a temporal stride of 1 in all the 3D
convolution layers.

Channel Gating We visualize the role of channel gating
module in the network in Fig. 2. We show the overlapped
input frames in Fig. 2a to highlight the parts which have
motion. In Fig. 2b and Fig. 2c, we plot the feature maps
corresponding to the channel dimension with the largest
activation while using and without using the feature gating
respectively. We observe that the network trained with spatio-
temporal gating (Fig. 2b) learns to focus on parts of input
with visible motions (high activations in red), thus resulting
in confident predictions of the interpolated motion estimates
compared to Fig. 2c. In fact, training without spatio-temporal
gating results in a drop in PSNR value from 36.3 to 36.1,
further validating the utility of having the gating module.

Loss Function Many previous works [8] have studied
the effect of using purely pixel loss vs. perception based
losses [5]. Using only L1 or L2 loss would improve on
the PSNR metric, but would cause blur in predictions. On
the other hand, adding VGG based perception loss would
result in sharper images visually. We observe from Tab. 1d
that we did not improve upon the PSNR or SSIM metric by
using any additional loss functions like VGG loss or Huber
loss, apart from just L1 loss which also resulted in visually
sharper images in our case.

SSMO [4] DAIN [1] QVI [14] FLAVR

PSNR 30.8 32.49 36.29 37.82
SSIM 0.924 0.957 0.980 0.983

Table 2: Comparison with state-of-the-art methods for 4x interpola-
tion on Adobe dataset.

2. Multi-frame Interpolation

We show the results for 4× interpolation in Tab. 2.
FLAVR significantly outperforms other approaches on 4×
interpolation, in addition to results on 2× and 8× shown in
the main paper.

3. Experiment Settings for downstream appli-
cations

3.1. Low-fps video object segmentation details

To examine the effectiveness of using the outputs of
FLAVR, we choose the task of object segmentation in videos
using mask propagation.

Motivation Achieving good label (or mask) propaga-
tion requires estimating perfect pixel level correspondences
between frames of a video, using similarity between the
respective feature maps. However, estimating such corre-
spondences might be challenging if the frame sequences are
extracted from low-fps videos. We want to validate if using
FLAVR can improve low-fps video object segmentation.

Setup and baseline. DAVIS is the standard benchmark
popularly used for video object segmentation which include
videos at 30FPS. To adopt to low-fps setup, we purposely
downsample DAVIS videos into lower frame rates, e.g.,
15FPS or 8 FPS, and evaluate different object segmentation
approaches on these low-fps videos. We choose CRW [3],
the current state-of-the-art method for video object segmenta-
tion, as a baseline which is applied directly on downsampled
low-fps videos. We then compare this baseline with using
the same method, i.e. CRW, on interpolated videos generated
by FLAVR by 2x or 4x interpolation from 15FPS or 8FPS
videos. Results are shown in the main submission showing
that FLAVR helps to improve low-fps video object tracking.
The label propagation mechanism is the same as used in [3].



3.2. Motion magnification

Motion Magnification [9, 12, 13] deals with magnifying
subtle yet important motions from videos, which are often
imperceptible by human eyes. From [9], we define motion
magnification as follows. For an Image I(x, t) = f(x +
δ(x, t)), the goal of motion magnification is to generate an
output image Ĩ(x, t) such that

Ĩ(x, t) = f(x+ (1 + α)δ(x, t)) (1)

for a magnification factor α. For frame interpolation, α <
1, since we are interested in what happens between two
frames while for motion magnification, α > 1, since we
look to extrapolate existing motions beyond visible regime.
While prior works [9,12,13] used custom architectures along
with various post processing filters for this task, we offer a
complementary perspective and look into how much a simple
architecture like FLAVR pretrained on frame interpolation
helps motion magnification. For this purpose, we use the
synthetic dataset CoCo-Synth [9] to perform the training. We
train the network for a fixed magnification factor of 10 (α =
10). On this dataset, when compared to no pretraining at all,
pretraining on FLAVR improved the SSIM values on a held-
out validation set from 0.732 to 0.801. We provide sample
videos after magnification and compare it with phase based
approach [13] in our supplementary video. We emphasize
that we do not apply any post processing such as temporal
or spatial filters for removing noise on the outputs. The
videos are generated directly as an output of the FLAVR
architecture pretrained on frame interpolation, and finetuned
for motion magnification.

3.3. Experiment setting for action recognition

For downstream experiments on action recognition, we
use the train and validation split 1 of UCF101 [6] and
HMDB51 [7]. We remove the decoder from the architec-
ture and use the pretrained encoder along with a classifier
(a global average pooling, a fully-connected layer, and a
softmax) for training on downstream actions and add a tem-
poral stride of 4. For UCF101, we use an input size of
32× 3× 224× 224 and for HMDB51 we use an input size
of 16× 3× 224× 224 with a batch size of 16. The networks
are fine-tuned using SGD with batch norm with a learning
rate of 0.02 for 40 epochs. During inference, we sample
10 consecutive overlapping clips of length 32 from the test
video and average predictions over all the clips.

3.4. Experiment setting for optical flow estimation

One crucial point to consider in downstream training on
optical flow is that the flow networks generally take only
two input frames which is considered too short for 3D CNN.
Nevertheless, to examine the effectiveness of features learnt
using frame interpolation for optical flow, we use the same

encoder and decoder, and initialize the last prediction layer
to output two channels instead (corresponding to x and y
values of flow at each pixel). Since the interpolation network
was trained to take 4-frame inputs, we apply copy padding
to the inputs, e.g. repeating each input frame 2 times. We
use an EPE (end point error) loss and train our network for
200 epochs. We report numbers using 5-fold cross validation
over the MPI-Sintel clean and fina as well as Kitti subsets.

4. Qualitative Results
We show additional qualitative results by applying frame

interpolation technique on insect motion videos in Fig. 3.
We believe that this application is of immense use for closer
inspection of biological properties from videos. We obtain
videos from AntLab Youtube channel1 that have insect take-
off and flying captured at very high FPS. We down-sample
the frame rate to 15FPS and apply our interpolation net-
work to recover videos of higher frame rate. We apply our
8× model once to obtain videos of 120FPS. The images
are shown in Fig. 3. Complete videos are available in our
supplementary video.

Middlebury Dataset.
We evaluate FLAVR on the publicly available test im-

ages from Middleburry dataset [11] on the task of single
frame interpolation. However, Middleburry has test sam-
ples with only two input frames while FLAVR requires 4-
frame inputs. In those examples, we simply duplicate them
into 4 frames and evaluate with FLAVR. For two frame
sequences like teddy, duplicating inputs is obviously sub-
optimal. On sequences where multi-frame inputs are avail-
able, FLAVR outperforms most prior interpolation works
like SuperSloMo [4], BMBC [10] and EDSC [2]. Qualitative
results for some such sequences are presented in Fig. 4. The
complete results are available on the public leaderboard.

5. User study
We carry the user study on the Amazon Mechanical Turk

(AMT) platform. We select two representative works that
belong to two broad families that perform linear (Super-
SloMo [4]) and quadratic (QVI [14]) warping for multi-
frame interpolation. Then, we compare each video generated
by FLAVR with videos generated using each of SuperSloMo
and QVI separately. For this purpose we use all 90 HD
videos from the DAVIS dataset, generate 8× interpolated
videos and place the two interpolated videos one beside the
other and randomly shuffle the order of videos. We then
show each pair of videos to 6 AMT workers and ask them
to choose which video, right or left, looked more realistic.
The method preferred by more users is chosen as a win-
ner for that particular video. In case of tie, that is if each
method is chosen by 3 users, we place the video under “no

1https://www.youtube.com/user/adrianalansmith

https://vision.middlebury.edu/flow/eval/results/results-i1.php
https://www.youtube.com/user/adrianalansmith


Figure 3: Qualitative Results for 8× video frame interpolation on Insect Motion Videos. Frame at t = 0 and t = 1 are given as inputs to the network to
predict the remaining 7 intermediate frames. Original Videos acquired from AntLab Youtube Channel.

preference” category. Workers are paid in accordance with
minimum wages rules. With this setting, we find that users
overwhelmingly chose our videos in preference against Su-
perSloMo [4]. More details are provided in subsection 5.1
of the main paper.

6. Training details
We train the 2× interpolation network on Vimeo-90K

dataset and 4× and 8× interpolation networks on the Go-
Pro dataset and use the official train and validation splits
with the sampling strategy explained in subsection 3 of the
paper. We use a crop size of 256×256 and 512×512 for
Vimeo-90K and GoPro datasets, respectively. We employ
random frame order reversal and random horizontal flipping
as augmentation strategies on both the datasets. We use use
an initial learning rate of 2× 10−4 and divide the learning
rate by 2 whenever the training plateaus. We train the 2×
interpolation network for 200 epochs, while 4× and 8× in-
terpolation network were trained for 120 epochs. We use
a mini-batch size of 64 on Vimeo-90K dataset and 32 on
GoPro dataset, and train our network on 8 2080Ti GPUs.
We reduce the learning rate by half whenever the training
plateaus which is cross-validated by the validation set. We
apply mean normalization once for every mini-batch of input
frames separately rather than using global mean normaliza-
tion or batch normalization inside the network to achieve
training stability. We use 8 GPUs and a mini-batch of 32
to train each model, and training is completed in about 36
hours for 2× and 22 hours for 8× interpolation networks on
Vimeo and GoPro datasets respectively.

7. Benchmarking inference time
The inference time benchmarking was performed using

an NVIDIA-2080Ti GPU with 12GB memory. The calcu-
lated time only includes forward pass excluding the data
pre-processing time and CPU/GPU transfer. The results
were obtained by averaging over 100 samples from Adobe-
240FPS dataset using 512×512 crop size. For multi-frame
interpolation, the time required is calculated as the aggregate
time required for interpolating all the frames. Non-blocking
CUDA operations as well as GPU warm start time were

accounted for during inference time computation.

8. Statement on potential negative impact
Frame interpolation aims to generate non-existent frames

between existing frames of a video. While achieving state-
of-the-art performance using simple architectures through
FLAVR is a plus, any kind of generative models can be
misused to forge or tamper a video which may have a nega-
tive impact on applications where outputs of FLAVR have
a bearing on reliability. Moreover, one of the applications
of FLAVR is to improve object tracking in videos, which
might have a potential to be used in surveillance for nefarious
purposes.

9. Overview of attached code
The training and testing code is provided along with the

supplementary attachment. The trained models have also
been provided for direct inference, but as download links
due to supplementary size limits. Our trained model can also
be used to create slomo videos starting from arbitrary videos
(requires OpenCV 4.2.0). The README.md file contains
instructions to run the code.
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