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A. Monocular Depth Estimation

Joint optimization on identical dataset subsets Table S.1
presents the performance of the monocular depth estimation
single-task baseline and the best performing self-supervised
task, DenseCL. While in the main paper (Sec. 4.1, Ta-
ble 1) the self-supervised objective had access to the entire
dataset, in Table S.1 both objectives use the same subset for
optimization. Consistent improvements across all dataset
splits are still observed.

Table S.1. Monocular depth estimation performance in RMSE on
NYUD-v2. Both supervised and self-supervised objectives use
identical splits. CompL denotes the addition of the best perform-
ing self-supervised objective, DenseCL, and yields consistent im-
provements.

CompL Dataset Size

5% 10% 20% 50% 100%

0.8871 0.8120 0.7471 0.6655 0.6223
X 0.8840 0.8080 0.7305 0.6508 0.5990

B. Semantic Segmentation

Joint optimization on identical dataset subsets Table S.2
presents the performance of the semantic segmentation
single-task baseline and the best performing self-supervised
task DenseCL. Similar to Table S.1, both objectives use
the same subset for optimization. Consistent improvements
across all dataset splits are again observed.
Robustness to zero-shot dataset transfer In Sec. 4.2 , we
additionally investigated the generalization capabilities of
CompL to a new and unseen dataset. Table S.3 presents the
performance of the BDD100K experiments from Fig. 6.

We additionally evaluate how the models trained on
PASCAL VOC from Table 2 (“Semseg” and “Semseg +
Task name”) perform without re-training on COCO [7] on
the same classes. As seen in Table S.4 and Fig. S.1, joint
training with the contrastive methods consistently outper-
form across all percentage splits, with the lower labeled per-
centages observing the biggest improvement.

Table S.2. Semantic segmentation performance in mIoU on PAS-
CAL VOC. Both supervised and self-supervised objectives use
identical splits. CompL denotes the addition of the best perform-
ing self-supervised objective, DenseCL, and yields consistent im-
provements.

CompL Dataset Size

1% 2% 5% 10% 20% 50% 100%

30.82 37.66 49.95 55.17 61.30 67.38 70.42
X 31.59 38.85 50.87 56.45 61.92 68.06 71.15
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Figure S.1. Performance of semantic segmentation in mIoU
trained on PASCAL VOC and evaluated on COCO. The local con-
trastive loss of DenseCL provides consistent robustness improve-
ments.

C. Multi-Task Model (Semseg and Depth)

Joint optimization In Table 4 of the main paper, we pre-
sented the performance of the baseline multi-task model
(Depth + Semseg), and the model trained jointly with
DenseCL (Depth + Semseg + DenseCL). For ease in com-
parison between the different models, Fig. S.2 additionally
visualizes the results. Training under CompL enhances the
performance of both Semseg and Depth, with Depth observ-
ing a noticeable gain over Semseg in low data regimes. As
discussed in the main paper, this can be attributed to the
DenseCL hyperparameters being optimized directly for the
improvement of Depth. Furthermore, more advanced loss



Table S.3. Performance of semantic segmentation in mIoU trained on PASCAL VOC and evaluated on BDD100K. The local contrastive
loss of DenseCL provides significant robustness improvements.

Model Labeled Data

1% 2% 5% 10% 20% 50% 100%

Semseg 8.18 8.95 10.16 11.18 13.45 17.95 19.51

Semseg + Rot 9.41 8.42 10.71 12.25 13.00 18.00 17.45
Semseg + MoCo 8.56 9.28 11.8 12.28 14.56 20.79 20.45
Semseg + DenseCL 10.36 10.90 15.30 17.71 20.62 23.20 22.03

Table S.4. Performance of semantic segmentation in mIoU trained on PASCAL VOC and evaluated on COCO. The local contrastive loss
of DenseCL provides consistent robustness improvements.

Model Labeled Data

1% 2% 5% 10% 20% 50% 100%

Semseg 23.78 28.62 36.53 39.05 43.85 47.37 50.76

Semseg + Rot 22.05 26.92 36.29 39.64 43.93 48.01 50.70
Semseg + MoCo 25.42 30.06 37.44 40.88 44.64 48.99 51.41
Semseg + DenseCL 25.96 30.67 38.66 41.40 45.21 49.00 50.93

balancing schemes [2] could yield a redistribution of the
performance gains, however, such investigation is beyond
the scope of our work.

D. Experiment Details

D.1. Codebase

In this work, we base our experiments on the VI-
sion library for state-of-the-art Self-Supervised Learning
(VISSL) [3], released under the MIT License. VISSL in-
cludes implementations of self-supervised methods, and
was adapted to enable for the joint optimization of the ex-
isting algorithms with supervised methods (semantic seg-
mentation, monocular depth estimation, and boundary de-
tection). The code will be made publicly available upon
publication to spark further research in Composite Learn-
ing (CompL).

D.2. Technical details

All experiments were conducted in our internal cluster
using single V-100 GPUs. Due to the considerable costs
associated with multiple runs (beyond our compute infras-
tructure capabilities), we run all experiments with a ran-
dom seed of 1, the default setting of VISSL. We provide
additional details about different aspects that affect the self-
supervised methods below:

Memory bank MoCo [5] and DenceCL [11] utilized a
memory bank to enlarge the number of negative samples
observed during training, while keeping a tractable batch
size. Specifically, both methods use a memory bank of
size 65,536. All the datasets we used in our study are of
a smaller magnitude compared to that memory bank, e.g.
10,582 and 795 for PASCAL VOC 2012 (aug.) [4] and

NYUD-v2 [9], respectively. We therefore set the memory
bank to have the same size as the training dataset, yielding
a single positive per sample, and therefore allowing for the
direct use of the InfoNCE loss [8]. A larger memory bank
can also be used, however the contrastive loss would need
to be adapted to account for multiple positives [6].

Image cropping We use nearly identical augmentations
to those proposed in MoCo v2 [1] for the self-supervised
methods of [5, 11], but found it beneficial to modify im-
age cropping. In most classification datasets, each image
is comprised of a single object, and thus low overlapping
crops can still include the same object. In dense tasks such
as semantic segmentation, low overlapping crops can con-
tain different objects (Fig. S.3). We follow the practice
of [10] and find a constant crop size and distance between
the two patches for each task. We empirically find that
square crops of size 384 with a distance of 32 pixels on
both axis works best for semantic segmentation, crops of
size 283×373 (to maintain input size ratio) with a distance
of 8 pixels worked best for depth, and square crops of size
320 with a distance of 4 pixels worked best for boundary
estimation.

DenceCL global vs local contrastive DenseCL, as dis-
cussed in Sec. 3.2 of the main paper, includes a global and
a local contrastive term. The importance of the local con-
trastive term is weighed by a constant parameter. The orig-
inal paper found that 0.7 for local contrastive and 0.3 for
global contrastive performed best for detection, but used 0.5
to strike a balance between the downstream performance on
detection and classification. In our study, we also found
0.7 for local contrastive yields the best performance, and as
such, used it for all DenseCL experiments.

Hyperparameter λ During training, the auxiliary loss is
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Figure S.2. Performance of (a) monocular depth estimation (Depth) and (b) semantic segmentation (Semseg) on NYUD-v2 for their multi-
task model. The multi-task model combined with CompL yields consistent improvements in both tasks.

(a) Input image

(b) Blue crop (c) Purple crop
Figure S.3. Low overlapping crops can be semantically different.
This is more apparent in dense prediction datasets where multiple
objects can be present in each image.

scaled by the hyperparameter λ, weighting the contribution
of the auxiliary self-supervised task. The hyperparameter
λ was selected by performing a logarithmic grid search,
as commonly done in MTL literature, chosen from the set
{0.05, 0.1, 0.2, 0.5, 1.0}. We found the performance of the
models to be consistent when λ is in the range of 0.1 to 0.5,
as seen in Table S.5. The performance quickly degrades for
values an order of magnitude larger as the model prioritizes

Table S.5. Ablation of the λ parameter for the semantic segmenta-
tion model trained jointly with DenseCL. The model yields com-
parable performance for all three values.

λ
Labeled Data

10% 50%

0.1 57.21 68.64
0.2 57.33 68.81
0.5 57.27 68.79

the auxiliary task over the target task, while smaller values
converge to the baseline performance.
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