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Due to the limitation of space in the main paper, we pro-
vide more quantitative and qualitative results and details of
the architecture in the supplementary material.

1. Detailed implementation.
We provide the detailed diagram of our proposed model

in Fig. A. The residual block is composed of a convolu-
tional layer, ReLU activation, and a convolutional layer.
The Attention-based Feature Align (AFA) module is com-
posed of 4 attention modules. The number of heads and the
latent dimension of the transformer module to 2 and 64, re-
spectively. The bidirectional propagation module consists
of a warping module and a residual block fusion module.
And we use a pre-trained flow net to estimate the optical
flow. The Attention-based Aggregation(AA) Upsampling is
composed of 2 convolutional layers, 2× Pixel Shuffle [4]
upsampling layer, LeakyReLU activation, and one decoder
attention. All convolutional layers are 2-dimensional and
have kernel size of 3× 3.

2. Extended experiments on the effect of the
frame number.

We augmented the ablation study on the effect of frame
number with additional results on a frame number of 11 in
Table A. Lee et al.-IR-`1 [2] shows a greater decrease in
PSNR (from 34.86 when using 13 frames to 34.02 when
using 5 frames). On the other hand, our model shows rela-
tively less performance degradation (from 34.44 when using
13 frames to 34.03 when using 5 frames). We can conclude
from Table A that our model can perform better when the
number of input frames and reference images are reduced
for practical applications.

3. Extended qualitative results.
We provide extended qualitative results in Fig. B and

Fig. C. As described in the main paper, our proposed
ERVSR reduces blurry artifacts and restores high-frequency

Model
The number of frame for SR

5 7 11 13

BasicVSR++ [1]
32.56 32.74 32.80 32.80
0.9381 0.9404 0.9416 0.9416

Lee et al.-IR-`1 [2]
34.02 34.36 34.79 34.86
0.9516 0.9548 0.9584 0.959

ERVSR (Ours) 34.03 34.15 34.38 34.44
0.9534 0.9541 0.9562 0.9567

Table A. Extended quantitative evaluation of various networks on
various the number of frames in window. Best results are high-
lighted and second-best results are underlined. 1st and 2nd row
mean PSNR (dB) and SSIM scores, respectively.

details such as letters.

4. Reproduction of MASA-SR [3]
We measured the PSNR and SSIM values of MASA-SR

on RealMCVSR as 27.94 and 0.805, respectively. We guess
that the reason for the low performance of the model is due
to the implementation issue, so we did not report it in Table
1 of the main paper.

5. Video material.
We provide the video material to show the performance

of our method here. We mainly compared the super-
resolved video of ours and the bicubic interpolation.

6. Measurement of GPU memory usage.
All of the results regarding GPU memory usage on the

main paper are measured on an NVIDIA A100-40GB. The
memory usage for each window of video is measured as the
peak GPU memory usage during inference.
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Figure A. Flowchart of the proposed ERVSR framework.
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Figure B. Qualitative comparison of our methods with previous works. . For better comparison, we zoomed some area of the images in.
(a): LR input, (b): Bicubic interpolation, (c): BasicVSR++ [1], (d): Lee et al. [2], and (e): Ours, respectively.
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Figure C. Qualitative comparison of our methods with previous works. For better comparison, we zoomed some area of the images in. (a):
LR input, (b): Bicubic interpolation, (c): BasicVSR++ [1], (d): Lee et al. [2], and (e): Ours, respectively.


