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Figure 1. Overall architecture of our video grounding model.

1. Implementation Details

Video grounding model. We illustrate the architecture of
our video grounding model in Fig. 1. The grounding model
takes the video features f̂ and the pseudo language feature
q̃ while training and the real language feature q at inference.
For the video features, we apply a Bi-GRU [1] and concate-
nate with f̂ followed by a single MLP to obtain the encoded
video features s ∈ RT×d. We also apply a single MLP to
project the language feature (q or q̃) to the d-dimensional
feature space. With the projected video and language fea-
tures, we obtain the language-guided video feature satt us-
ing the cross-modal attention module. To take the global
context into account, we employ the self-attention module
for satt. We use 3 multi-head attention (MHA) layers with
4 heads for the cross-attention and 2 MHA with 4 heads for
the self-attention. Finally, we regress the start and end time
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Figure 2. Selection transformer architecture.

stamps (t̂s, t̂e) with two MLP layers:

a = Softmax(MLP1(ŝatt)) ∈ RT , (1)
s̃ = Avg(a⊙ ŝatt), (2)

(t̂s, t̂e) = MLP2(s̃), (3)

where ŝatt is the self-attended feature, Avg(·) is the average
pooling along the temporal axis, and ⊙ denotes the elemen-
twise multiplication.

Selection transformer. We introduce the selection trans-
former to choose a single dominant pseudo language fea-
ture q̃ from the candidates q. We employ a low-capacity
transformer [8] to consider computational costs. Specifi-
cally, we first project the candidate features q using a single
MLP and feed them into the transformer. The output of
the transformer is fed into the additional MLP followed by
Gumbel-softmax estimator [3] to obtain discrete logits. We
finally take the single pseudo language feature q by mul-
tiplying the discrete logits to the initial candidates q. The
overall architecture of the selection transformer is shown in
Fig. 2.

2. Additional Experimental Results
Effect of the number of frame embeddings. To verify
the effectiveness of the number of pseudo language candi-
dates N used in the selection transformer, we provide the
performance according to various values of mIoU, as shown
in Tab. 1. The results show that the performance increases



N R@0.3 R@0.5 R@0.7 mIoU
1 50.2 34.84 15.66 33.49
2 51.21 34.07 17.81 34.48
4 51.03 35.74 17.65 34.37
9 52.95 37.24 19.33 36.05
16 50.92 34.87 16.33 33.80

Table 1. The ablation study of the number of the pseudo language
candidates N in the selection transformer.

Frame Order R@0.3 R@0.5 R@0.7 mIoU
Random 52.95 37.24 19.33 36.05

Ordered + epos 50.14 34.05 15.47 33.29

Table 2. The ablation study of the relative temporal order of the
pseudo language candidates in the selection transformer.

as N increases in terms of Recall@0.7 and mIoU until the
9 candidates. We observe that a large number of candi-
dates (N = 16) significantly degrades the performance.
Not surprisingly, it seems that many candidates provide a
large number of noisy and redundant candidates, making the
selection transformer challenging to choose a good pseudo
language feature. Especially, this problem can be maxi-
mized with the short temporal proposal which contains a
small number of frames. Summarizing the results, we set
N = 9 for all experimental results in the main paper.

Effect of temporal ordering. In our method, we gener-
ate the pseudo language feature from frames without any
temporal context. We investigate the effect of the tempo-
ral ordering of frames in generating the pseudo language
feature. We add temporal positional embeddings [8], epos,
to the frame embeddings and feed them into the selection
transformer. As shown in Tab. 2, the pseudo language fea-
tures generated with temporal context slightly degrade the
performance. We ascribe this mainly to the pretrained CLIP
encoder featuring the image-based model that is not learned
with temporal context.

Comparison with VideoCLIP. As shown in the main
paper, the pretrained visual encoder of the image-based
vision-language model (i.e. CLIP [7]) provides better
performance than the video-language model (i.e. Video-
CLIP [10]). We present additional qualitative comparisons
to validate the effectiveness of the image-based vision-
language model. As shown in Fig. 3, while the model with
VideoCLIP sometimes fails to predict the time interval cor-
responding to given queries, the proposed model with CLIP
predicts more confident time intervals. It demonstrates that
the large-scale image-language model is effective enough
when given a query describes static scenes.

Method Sup. TE (ms) CML (ms) ALL (ms) R@0.5
LGI [5] FS 1.63 7.75 9.38 59.46
WSTAN [9] WS 1.4 43.14 44.55 29.35
CNM [11] WS 0.91 8.7 9.61 35.43
Ours ZS 6.73 7.65 14.38 37.24

Table 3. Speed and accuracy on the Charades-STA. Reported time
costs include - TE (query embedding generation), CML (cross-
modal learning for video grounding), and ALL (TE+CML).

Comparison with SOTA [6]. We present more qualita-
tive comparisons with the SOTA method [6] evaluated on
the Charades-STA [2] dataset. As shown in Fig. 4, our
model produces more accurate predictions than PSVL and
successfully predicts different time intervals according to
the different queries for the same video. In addition, we
depict qualitative results for the ActivityNet Captions [4]
dataset as shown in Fig. 5.

Computational Cost We measure inference time (ms)
for each video in the Charades-STA dataset using a sin-
gle RTX 2080ti with 11GB memory and report in Tab. 3.
The inference time is separated into two parts: text em-
bedding generation (TE); and crossmodal learning (CML)
for video grounding. As shown in Tab. 3, our method re-
quires a higher time cost for text embedding than previous
works since we use CLIP text encoder. Meanwhile, our
method achieves the fastest runtime by 7.65ms for cross-
modal learning thanks to the lightweight model architec-
ture. Our method requires 14.38ms in total, outperforming
weakly-supervised approaches [9, 11].

Failure cases. We analyze some failure cases of our
model as shown in Fig. 6. We observe that our model fails
to localize the time stamps for the query where visual cues
are hard to recognize or minor scene changes appear on con-
secutive frames. For example, while the action ‘eat’ is pre-
cisely detected, our model fails to recognize the object ‘jar’
(recognizes ‘cup’ instead), as shown in Fig. 6(a). As an-
other example, our model produces a reasonable location
for ‘a person awakens in a bedroom’ that has obvious scene
changes, as shown in Fig. 6(b). However, the result shows
that our method fails to localize the time interval for the
query ‘person looks over at picture’ that corresponds to a
static scene.
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Figure 3. Qualitative comparisons corresponding to the language
feature encoders on the Charades-STA dataset.
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Figure 4. Qualitative comparisons between ours and PSVL on the
Charades-STA dataset.
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Figure 5. Qualitative comparisons between ground-truth intervals
and ours on the ActivityNet Captions dataset.
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Figure 6. Failure cases of ours comparing PSVL on the Charades-
STA dataset.


