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A. Dynamic and Adaptive Properties of High-
Frequency Weight Matrix

Unlike the static matrix (e.g., Laplacian operator), which
imposes the constant value to the same spectral position, the
weights of the high-frequency weight matrix (HFWM) are
updated dynamically in the training progress. As shown in
Figure 1, the distribution of the weights is adjusted adap-
tively to the outputs over training time. Hence, HFWM
could dynamically impose weights on the frequencies, even
in the fluctuating training condition. Also, to confirm the
effect of HFWM on performance, we experiment in two set-
tings with ShoeV2 [9]; the case of using WHFL to the Cy-
cleGAN [10] baseline and the case of replacing HFWM of
WHFL with the Laplacian operator. Consequently, we can
observe that HFWM improves the performance, as shown
in Table 1.

B. Quantitative Ablation Study
We conduct ablation studies to analyze how the pro-

posed components, HFWM and multi-scale decomposition

Table 1. Performance comparison between two settings. (a) indi-
cates the result when WHFL is used, and (b) shows the case of
replacing HFWM of WHFL to the Laplacian operator.

(a) (b)
FID ↓ 56.354 76.786
IS ↑ 2.756±0.300 2.593±0.336

Table 2. Quantitative results for ablation studies of five experimen-
tal settings. We check the performance on the network baseline,
(a) FFL [3] (baseline+FFL), (b) replacing the weight matrix of
FFL to HFWM (baseline+FFL+HFWM), (c) applying multi-scale
decomposition scheme to FFL (baseline+FFL+Multi-Scale), and
(d) our full WHFL (baseline+FFL+HFWM+Multi-Scale).

Pix2Pix [2] CycleGAN [10] MUNIT [1]
FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑

baseline 63.580 2.505±0.175 60.138 2.787±0.354 110.252 2.797±0.278
(a) 62.194 2.614±0.335 56.870 2.669±0.346 107.314 2.784±0.470
(b) 63.062 2.652±0.262 54.958 2.671±0.361 103.706 2.809±0.291
(c) 65.784 2.626±0.181 65.954 2.764±0.449 104.463 2.659±0.272
(d) 61.744 2.622±0.202 56.354 2.756±0.300 102.203 2.925±0.344

scheme, affect the evaluation metrics with three network
baselines. We adopt five experimental settings, as illustrated
in Table 2. With full WHFL (Table 2(d)), quantitative re-
sults are enhanced compared to the baseline with FFL [3]
(Table 2(a)) in most cases. Also, we can observe that the
performance is improved more consistently with HFWM
(Table 2(b)) than with the multi-scale scheme (Table 2(c)).
Therefore, we conclude that HFWM is a more crucial com-
ponent in WHFL. Besides, since both metrics tend to be im-
proved evenly with the multi-scale method, it seems that our
scheme properly complements HFWM.
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Figure 1. From (a) to (c), they visualize the sequential change of
high-frequency weight matrix (HFWM) over training time (the up-
per left corner is (0,0) and the lower right corner is (π, π)). Note
that we use a jet colormap where the reddish colors represent high
values, and the blue ones indicate the lower. (d) plots the averaged
magnitude of the weights along the diagonal direction (0.5 corre-
sponds to π), and the figure on the right is an enlarged view of the
yellow box in the left plot. Also, all graphs in (d) are normalized
to [0,1].
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Figure 2. Plot of the averaged magnitude of the weights along the
diagonal direction from (0, 0) to (π, π) according to the weight
control factor for (a) ShoeV2 and (b) edges2shoes.

C. Ablation Studies for Weight Control Factor
To determine which weight control factor is appropriate,

we experiment with three cases of α = 1, 2, 3. As shown
in Figure 2, we find that as α increases, the weights tend to
be concentrated in the narrow frequency bands, which is not
desirable. Although we confirm no meaningful difference in
performance according to the factors, we set α = 1 based
on the above observation and Jiang et al. [3].

D. Spectral Bias of Traditional Methods
Generative models that adopt convolutional neural net-

works tend to learn low frequency in a biased way. As
shown in Figure 3, when we calculate the absolute value
of the difference between the averaged log-magnitudes of
DFT from real and fake images, we can observe that the
values at high frequencies are larger than those at low ones.

E. Network Details
E.1. Pix2Pix

Pix2Pix [2] was proposed for image-to-image translation
tasks for general purposes. The framework consists of a
generator adopting U-Net [6] and a patch-based discrimina-
tor. For the objective functions, the conditional GAN loss
and L1 loss between the generated and real images are used
to train the network. Therefore, to complement a loss func-
tion defined in the spatial domain, we apply WHFL to L1
loss.

E.2. CycleGAN

CycleGAN [10] learns two mapping networks between
domains with the unpaired dataset. One generator trans-
lates an image from domain A to domain B, and the other
does it in the opposite direction. The generators use the
architecture suggested in [4], and the discriminators adopt
PatchGAN [2]. The cycle consistency loss and adversarial
loss [5] are utilized for the objective functions. The cycle
consistency loss penalizes the difference between outputs
and real images using L1 loss in both directions, and WHFL
complements the loss.

Real DifferenceFake

Figure 3. Real and fake images with the corresponding log-
magnitudes of DFT, and the difference of the log-magnitudes.
Note that the log-magnitudes are averaged on multiple samples.
The first row displays edges2shoes, and the second ShoeV2.

E.3. MUNIT

MUNIT [1] is an unsupervised framework that can trans-
late the image from a source domain to multiple target do-
mains. The framework uses an approach to decompose an
image into content and style code. Therefore, the frame-
work comprises encoders that map an image to the content
and style code and a decoder generating an image with the
codes. Reconstruction losses and adversarial loss are used
as objective functions. L1 loss is adopted to penalize recon-
structions of the image and latent codes (content and style).
Moreover, the adversarial loss [5] utilizes the decoded and
real images from the target domain. We select the recon-
struction loss for an image to WHFL to be applied.

F. Dataset Details

F.1. Edges2shoes

For a paired dataset, we choose edges2shoes [8] in which
an edge map and the corresponding photo are coupled. The
photos are binarized to edge maps by HED [7] and post-
processing. The training and test sets consist of 49,825 and
200 images, respectively.

F.2. ShoeV2

To train CycleGAN and MUNIT, we exploit ShoeV2 [9].
The dataset comprises photos and free-hand sketches, but
the images are not fed to the network in pairs during train-
ing. The number of images in the training and test sets
is 6,648 and 2,000. Besides, we use the same number of
sketches and photos during the test.

G. Additional Visualization

We display the comparisons between the weight matrix
in FFL [3] and HFWM (Figure 4). Also, we show more
results of Pix2Pix (Figure 5), CycleGAN (Figure 6), and
MUNIT (Figure 7). We also exhibit edge maps extracted by
our HFWM for training samples of edges2shoes (Figure 8)



and ShoeV2 (Figure 9). Finally, we specify the limitation
by visualizing flat regions of failure cases (Figure 10).
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Figure 4. More visualizations for the comparison between the weight matrix in FFL [3] and HFWM, which consists of (a) fake image, (b)
real image, (c) the weight matrix in FFL, (d) HFWM, and (e) the graph plotting the averaged magnitude of the weights along the diagonal
direction from (0, 0) to (π, π) (the red line means (c) and the blue one indicates (d)). Note that an output image and ground-truth do not
need to be paired in CycleGAN [10] and MUNIT [1].
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Figure 5. Additional visualization for Pix2Pix [2]
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Figure 6. Additional visualization for CycleGAN [10]
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Figure 7. Additional visualization for MUNIT [1]

Figure 8. Additional visualization for edge maps extracted by HFWM for training samples of edges2shoes.



Figure 9. Additional visualization for edge maps extracted by HFWM for training samples of ShoeV2.
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Figure 10. Visualization for failure cases (i.e., flat regions) for (a) edges2shoes and (b) ShoeV2. There is no significant improvement in the
texture between the fake images from the vanilla method (red) and WHFL applied (green).
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