
Supplementary Material
A. Speed Up Calculation

While Super Progressive Learning reduces the number of
floating point calculations made by using a smaller resolu-
tion, Hard Augment adds an additional overhead for training
which can be calculated by equations 9 and 11 respectively.
Generally we find that we can reduce the number of steps by
1.7 times while reduce the number of floating point opera-
tions at each step by 1.4 times.

B. Additional Implementation Details

We have trained all our experiments in the single node
setting with maximum 8 GPUs which restricted us to use 512
as the maximum batch size. Some of the SSL methods like
SimCLR [6] and BYOL [22] have been shown to perform
better with larger batch sizes which we could not replicate
and restricted ourselves to the same training setting in all our
experiments.

In some of the ablations and analysis experiments where
we study the effect of a certain parameter different values can
be used. For Linear evaluation we use freeze the encoder and
re-initialize the last layer and train with batch size 2048 and
learning rate 0.8 for 90 epochs using the LARS optimizer.

Our implementation is based on PyTorch Lightning [16]
where we define Hard Augmentation and Super Progressive
Learning Schedule as callbacks. We adapt the OneCycle
Learning rate schedule implementation3 for Extended Super
Convergence. We will provide the code for our method upon
publication. See the table for a full list of parameters Tab. 10.

C. Learning rate range finder

We have used the Learning rate range finder test proposed
by [41] to find good values for minimum and maximum
learning rates. This test increase learning rate exponentially
and keeps track of on the training and validation loss. The
minimum value and maximum value are determined by the
point at which the validation loss starts to decrease and the
point at which is starts to diverge. We calculate the validation
loss at each step on a batch of 4096 validation samples in
order to keep the test manageable.

In the test shown in Figure 4 we increase the learning
rate from 1× 10−3 to 1 in 200 steps. Both the training and
validation losses plateau close to step 135 and learning rate
.1 which we use in our experiments on Imagenette dataset.

3https://pytorch.org/docs/stable/generated/
torch.optim.lr_scheduler.OneCycleLR.html

Figure 4. Learning rate finder plot for training (left) and validation
(right) losses

D. Augmentation Resolution Relationship

In order to examine the relationship between resolution
and augmentation magnitude for self-supervised learning we
have conducted a series of experiments. We trained a BYOL
[22] model on the Imagenette dataset using the ResNet18
[24] architecture with RandAugment [12] augmentation with
the cosine annealing learning rate schedule where we change
the augmentation strength m while we change the input
image resolution. Each entry in the table is a separate ex-
periment with fixed input resolution and augmentation mag-
nitude. The results in Table 11 confirms that we can apply
higher magnitude augmentations only on higher resolution
images and the optimum augmentation magnitude increases
with resolution. This confirms our intuition behind the rela-
tionship between resolution and augmentation magnitude in
SSL and provides motivation for applying Super Progressive
Learning and allows us to confirm the findings of [44] for
SSL.

E. Progressive Augmentation Curriculum

However what values should be used as the minimum and
maximum augmentation magnitude is an important question.
Since we use the linearly scaled SimCLR [6] augmentations
in our method we made a hyper-parameter search on these
values in order to determine augmentation magnitudes em-
pirically. We train our method for 320 epochs with Super
Progressive learning schedule using 128 as the minimum
resolution for various augmentation magnitudes and com-
pare against the default augmentation magnitude of 5. Our
experiment shows that a minimum value of 4 and maximum
value of 6 perform better in our setting and outperform the
fixed augmentation setting.

F. Future Work

This idea can be extended to other modalities where reso-
lution is defined in different manners for example on sound
with the sampling rate analogue which in a similar sense
accelerates the training however than the amount of accel-
eration and cost benefit calculation will change. A similar
case can also be made for tabular data where the most impor-
tant features are processed first and later additional features
are added however this is much more difficult to implement

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html


Imagenette ImageNet
Hyper-parameter Baseline Efficient Baseline Efficient
Number of classes 10 10 1000 1000
Batch size 128 128 512 512
Weight decay 5× 10−4 5× 10−4 1× 10−4 1× 10−4

Learning rate 0.05 0.1 0.1 0.16
LR schedule CA ESC CA ESC
Warmup epochs 0 80 10 10
Momentum weight 0.9 0.85-0.95 0.9 0.85-0.95
Learning rate 0.05 0.05 0.05 0.16
Min aug. magnitude 5 4 5 4
Max aug. magnitude 5 6 5 6
Min view resolution 224 96 224 96
Number of positives 2 6 2 6
Selection resolution N/A 64 N/A 64

Table 10. Hyper parameters used in various setups. CA: Cosan Annealing, ESC: Extended Super Convergence

m=3 m=5 m=7 m=10 m=15
128 85.0 84.0 81.4 77.7 75.3
192 88.8 87.7 88.9 86.8 87.3
300 89.5 89.7 89.9 88.3 87.7

Table 11. Resolution and Augmentation Magnitude relationship
shown by training a self-supervised learning method on the com-
bination of resolution and magnitudes and measuring the online
classification accuracy of a linear layer

mmin mmax Acc(%)
5 5 88.6

2.5 4 88.4
3 4 88.7
4 5 88.7
5 6 88.7
4 6 88.9

Table 12. Maximum and minimum augmentation magnitude when
trained with Super Progressive learning

would probably require additional structure. Similarly train-
ing with a small vocabulary and than enlarging that can have
a similar effect as well.


