
Supplementary: CoNMix for Source-free Single and Multi-target Domain
Adaptation

1. Algorithmic Details

In the algorithm 1, we have provided the implementation
details of the proposed framework CoNMix (Refer Page- 2).

2. Theoretical Insights

2.1. Vision Transformer Preliminary

Recently, Vision Transformer (VT) [6, 29] is getting a
lot of traction for solving computer vision tasks and sur-
passing the existing SOTA results. Self-attention module,
which provides weight for each input feature vector in VT
is very crucial. Let, image I ∈ RH×W×C , where H, W
and C are image height, width and channels respectively. If
patches are of size P × P then total number of patches per
channel will be N = H×W

P×P . In VT, these images patches
act as sequence of inputs and projected into three different
vectors namely Query Q ∈ RN×dq , Key K ∈ RN×dq and
values V ∈ RN×dv . Here dq and dv are projected dimen-
sion. Finally, we compute the output using the weighted
combination of values (V) where the weight is calculated
as, Wattn = softmax(QKT√

dq

). Therefore, the weighted out-

put due to self-attention is formulated as Vout = WattnV .

2.2. Backbone Selection

Notation: We will use h as hypothesis or classifier. ξS(h)
and ξT (h) are expected risk/error of hypothesis h for
source domain and target domain respectively. ξV T

T (h) and
ξRN
T (h) are expected risk/error of hypothesis h for target

domain using Vision Transformer (VT) and ResNet (RN)
based backbone respectively. DS and DT are source and
target domain distribution respectively. dH∆H(DS ,DT ) is
divergence between source and target domain distribution
and d̂H∆H(XS ,XT ) is it’s empirical measure.

Let H be a hypothesis space of VC dimension d,
XS , XT are m unlabeled source and target domain samples,
each drawn from DS and DT respectively, then theorem 2
of [1] states that for any δ ∈ (0, 1), with probability at least

1−δ (over the choice of the samples) and, for every h ∈ H :

ξT (h) ≤ ξS(h)+
1

2
d̂H∆H(XS , XT )+4

√
2d log 2m+ log 2

δ

m
+λ

(1)
where λ is the sum of source error and target error w.r.t best
available hypothesis h∗ ∈ H. Eq. 1 represents goodness of
hypothesis h in target domain, where smaller expected risk
ξT (h) is desirable for a chosen hypothesis h.
We analyse feature space projection of same set of image
samples XS , XT using Vision transformer (VT) as well as
ResNet based backbone. For the givenXS ,YS and h, ξS(h)
will be close to zero because we do supervised training with
labeled source data. The term λ will be very small because
it is defined w.r.t best possible hypothesis. The 3rd term
on the right-hand side of Eq. 1 is constant. Therefore, we
can safely assume that the effect on upper bound of ξT is
largely due to divergence d̂H∆H(XS , XT ). If we denote
the remaining terms with a constant term c then Eq. 1 can
be re-formulated as

ξT (h) ≤
1

2
d̂H∆H(XS , XT ) + c (2)

A-distance is a measure of distance between two distribu-
tions. It can be approximated using Eq. 3, if we have large
number of samples [13]. Here h′ is a binary domain classi-
fier and dA is denoted as A - distance between the distribu-
tion DS and DT . ξ(h′) is the expected risk associated with
classifier h

′
which we measure on latent representation of

samples from DS and DT .

dA = 2[1− 2 min
h′∈H′

ξ(h′)] (3)

Ben et al. in [2] analysed the bound on expected risk
associated with target domain using A - distance which can
be seen as an approximation of divergence d̂H∆H. If we
replace d̂H∆H(XS , XT ) byA - distance (dA) in Eq. 2 then
the new expression will be dependent onA - distance which
is shown in Eq. 4

ξT (h) ≤
1

2
dA(XS , XT ) + c (4)

We can calculate dA(XS , XT ) using domain classifier h′

for source and target domain samples for VT as well as



Algorithm 1: CoNMix Implementation Details

Stage 1: Source Training
Input: Source Feature Extractor gs(x; θs); Source Classifier hs(x;ϕs); Source Data Ds;
Maximum Stage-i Epoch (Ei)max; Convergence threshold eth
while epoch < (E1)max or LCE > eth do
{xs

i , y
s
i }Bi=1 ∼ Ds ▷ Randomly sample a batch of source image

Update θs, ϕs by minimizing LCE

end
Stage 2: Single Target Domain Adaptation
Input: Set of target domains {Tj}Nd

j=1; jth Target domain data Dtj ;Maximum Epoch (E2)max;
Hyper-parameter λ1, λ2 and λ3; ▷ Nd is Number of target domains

Initialization: gtj (x; θtj )← gs(x; θs); ht(x;ϕtj )← hs(x;ϕs);
while epoch < (E2)max do
{xtj

i }Bi=1 ∼ Dtj ▷ Randomly sample a batch of target image

{xtj
iw}Bi=1 = {Aw(x

tj
i )}Bi=1 ▷ Weak Augmentation of ithsample

{xtj
is}Bi=1 = {As(x

tj
i )}Bi=1 ▷ Strong Augmentation of ithsample

Obtain Pseudo-Labels from Eq. (9)
Update θtj , ϕtj by minimizing loss from Eq. (12)

end
Repeat Stage-2 ∀j ∈ {1, 2, 3, ..., Nd}
Stage 3: Multi Target Domain Adaptation
Input: Student Feature Extractor gl(x; θl); Student Classifier hl(x;ϕl); Target Data {Dtj}

Nd
j=1; jth Target Feature

Extractor gtj (x : θtj ); j
th Target Classifier htj (x;ϕtj );

Initialization: gl(x; θl)← ImageNet pre-trained weights; hl(x;ϕl)← Random
while epoch < (E3)max do

while j ∈ {1, 2, 3, ..., Nd} do
{xtj

i1
, ŷ

tj
i1
}Bi1=1 ∼ Dtj and {xtk

i2
, ŷtki2 }

B
i2=1 ∼ Dtk ▷ Sample two random batch of target image (any

domain) with pseudo label

Get the MixUp sample and label, x̃ij = λx
tj
i1
+ (1− λ)xtk

i2
and ỹij = λŷ

tj
i1
+ (1− λ)ŷtki2

Update θl and ϕl by minimizing LMKD = LPl

CE(x̃ij , ỹij)
end

end

MCD clp inf pnt qdr rel skt Avg. CDAN clp inf pnt qdr rel skt Avg. CGDM clp inf pnt qdr rel skt Avg.
clp - 15.4 25.5 3.3 44.6 31.2 24.0 clp - 13.5 28.3 9.3 43.8 30.2 25.0 clp - 16.9 35.3 10.8 53.5 36.9 30.7
inf 24.1 - 24.0 1.6 35.2 19.7 20.9 inf 18.9 - 21.4 1.9 36.3 21.3 20.0 inf 27.8 - 28.2 4.4 48.2 22.5 26.2
pnt 31.1 14.8 - 1.7 48.1 22.8 23.7 pnt 29.6 14.4 - 4.1 45.2 27.4 24.2 pnt 37.7 14.5 - 4.6 59.4 33.5 30.0
qdr 8.5 2.1 4.6 - 7.9 7.1 6.0 qdr 11.8 1.2 4.0 - 9.4 9.5 7.2 qdr 14.9 1.5 6.2 - 10.9 10.2 8.7
rel 39.4 17.8 41.2 1.5 - 25.2 25.0 rel 36.4 18.3 40.9 3.4 - 24.6 24.7 rel 49.4 20.8 47.2 4.8 - 38.2 32.0
skt 37.3 12.6 27.2 4.1 34.5 - 23.1 skt 38.2 14.7 33.9 7.0 36.6 - 26.1 skt 50.1 16.5 43.7 11.1 55.6 - 35.4

Avg. 28.1 12.5 24.5 2.4 34.1 21.2 20.5 Avg. 27.0 12.4 25.7 5.1 34.3 22.6 21.2 Avg. 36.0 14.0 32.1 7.1 45.5 28.3 27.2
DeiT-B clp inf pnt qdr rel skt Avg. CDTrans clp inf pnt qdr rel skt Avg. CoNMix clp inf pnt qdr rel skt Avg.

clp - 24.2 49.8 16.8 65.3 53.3 41.9 clp - 27.9 57.6 27.9 73.0 58.8 49.0 clp - 24.5 54.3 14.5 71.9 56.3 44.3
inf 47.0 - 44.5 5.1 61.2 37.5 39.1 inf 58.6 - 53.4 9.6 71.1 47.6 48.1 inf 42.2 - 39.9 4.9 52.1 34.7 34.8
pnt 52.0 21.9 - 7.2 64.4 41.8 37.5 pnt 60.7 24.0 - 13.0 69.8 49.6 43.4 pnt 59.7 24.0 - 10.6 71.8 53.3 43.9
qdr 2.9 0.3 0.3 - 0.5 4.7 1.7 qdr 2.9 0.4 0.3 - 0.7 4.7 1.8 qdr 27.8 3.0 10.6 - 15.0 22.2 15.7
rel 48.4 18.9 47.2 6.4 - 31.5 30.5 rel 49.3 18.7 47.8 9.4 - 33.5 31.7 rel 63.5 27.7 59.5 12.9 - 52.9 43.3
skt 59.3 18.8 44.8 17.6 57.5 - 39.6 skt 66.8 23.7 54.6 27.5 68.0 - 48.1 skt 60.7 20.1 49.1 18.8 59.7 - 41.7

Avg. 41.9 16.8 37.3 10.6 49.8 33.8 31.7 Avg. 47.7 18.9 42.7 17.5 56.5 38.8 37.0 Avg. 50.8 19.9 42.7 12.3 54.1 43.9 37.3

Table 1: SOTA results comparison on DomainNet for STDA settings. For a given matrix, row and column represents source and target
domains respectively for different algorithms. CoNMix currently shows the best performance on DomainNet.



VisDA-2017

Domains Training Validation Total
No. of Sample 152,397 55,388 207,785

Office-31

Domains Amazon Dslr Webcam Total
No. of Sample 2817 795 498 4,110

Office-Caltech

Domains Amazon Caltech Dslr Webcam Total
No. of Sample 958 1123 157 295 2533

Office-Home

Domains Art (Ar) Clipart (Cl) Product (Pr) RealWorld (Rw) Total
No. of Sample 2427 4365 4439 4357 15,588

DomainNet

Domains Clipart (C) Infograph (I) Painting (P) Quickdraw (Q) Real (R) Sketch (S) Total
No. of Sample 48,837 53,201 75,759 172,500 175,327 70,386 596,010

Table 2: Detailed information for the datasets used.

Method params Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
EfficientNetV2b3 14.0 M 52.9 73.6 78.7 63.8 76.1 76.5 64.6 53.2 80.7 69.4 57.6 82.5 69.1
EfficientNetV2S 21.5 M 57.5 80.9 85.6 66.7 78.8 83.6 69.6 55.7 85.4 76.2 59.3 87.7 73.9

DeiT-S 22.0 M 63.8 83.7 84.4 73.7 83.3 82.2 73.4 59.9 84.4 75.7 62.3 86.3 76.1

Table 3: Effect of popular backbone selection on CoNMix. Even when the backbone parameters are same, DeiT-S backbones perform
better than EfficientNet backbones highlighting the benefit of VT backbone in solving adaptation tasks.
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Figure 1: Effect of PLR on NM as well as IM loss for Art→ Clipart split of Office-Home dataset. Target accuracy as well
as the pseudo label accuracy improves when add PLR. Combination of NM with PLR achieves the best performance.

ResNet based backbone. Clearly, the smaller dA(XS , XT )
will lead to tighter upper bound for ξT (h) which will give
improved performance. In Fig. 4 of the main paper we
see that dA(XS , XT ) for VT (DeiT-S) backbone is smaller
compared to ResNet50. We also observe the performance
gain on almost all the datasets when we use VT backbone
compared to its ResNet counterpart. Hence, we should pre-
fer VT during backbone selection for solving domain adap-
tation tasks.

2.3. Theorems

Theorem 2.1. Let ∥A∥F is the Frobenius norm of
classification-response matrix A ∈ RB×Kand ∥A∥∗ is the
nuclear norm of A. Then ∥A∥∗ is the upper bound for ∥A∥F .
Here, B is batch-size and K is total number of classes.

∥A∥F ≤ ∥A∥∗ (5)

Proof.

∥A∥F =
√
⟨A,A⟩ =

√
Tr(ATA)



Method SF aero bicycle bus car horse knife motor person plant skate train truck Avg

DANN [8] ✗ 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DAN [18] ✗ 68.1 15.4 76.5 87 71.1 48.9 82.3 51.5 88.7 33.2 88.9 42.2 61.1
CaCo [10] ✗ 90.4 80.7 78.8 57.0 88.9 87.0 81.3 79.4 88.7 88.1 86.8 63.9 80.9
CAN [12] ✗ 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi [20] ✗ 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

ResNet-101 [9] ✓ 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
SHOT-IM [15] ✓ 93.7 86.4 78.7 50.7 91.0 93.5 79.0 78.3 89.2 85.4 87.9 51.1 80.4
MA [14] ✓ 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT [15] ✓ 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
SHOT++ [16] ✓ 97.7 88.4 90.2 86.3 97.9 98.6 92.9 84.1 97.1 92.2 93.6 28.8 87.3
CPGA [24] ✓ 95.6 89.0 75.4 64.9 91.7 97.5 89.7 83.8 93.9 93.4 87.7 69.0 86.0
CoNMix(ours) ✓ 96.2 89.2 83.0 67.8 95.1 95.4 85.0 75.0 90.7 93.2 86.6 55.1 84.4

Table 4: Accuracy (%) on VisDA-2017 [23] for Single Target Domain Adaptation. Only methods within Shaded regions are Source-Free.
Magenta represents the best performance for given split across all Source-Free methods.

Performing the Eigen decomposition of ATA We have,

ATA = V D2V T (6)

Where, V is the eigen vector of ATA. After Substituting
the value of ATA in Eq. 6, we have

∥A∥F =
√
Tr(V D2V T ) =

√
Tr(D2V TV ) =

√
Tr(D2)

∴ ∥A∥F =

√√√√ r∑
i=1

σ2
i (7)

Where r is the rank of A and maximum value of r will be

Figure 1.

Figure 2: Diversity comparison for NM and IM. Diversity is
higher for NM when compared to IM throughout the training.

min(B,K). Squaring both the sides of Eq.7 we have,

(∥A∥F )2 =

r∑
i=1

σ2
i = (

r∑
i=0

σi)
2 −

r∑
i ̸=j

σiσj

= (∥A∥∗)2 −
r∑

i̸=j

σiσj ≤ (∥A∥∗)2 ( ∵ σ ≥ 0)

∴ ∥A∥F ≤ ∥A∥∗ (8)

Please Note that, ∥A∥∗ =
∑r

i=1 σi

∥A∥∗ =

√√√√(

r∑
i=1

σi)2 (9)

≤

√√√√ r∑
i=1

(1)

r∑
i=1

(σi)2 (cauchy-schwarz inequality)

=

√√√√r

r∑
i=1

(σi)2

=
√
r∥A∥F (10)

Using Eq. 8 and Eq. 10, we can show that

∥A∥F ≤ ∥A∥∗ ≤
√
r∥A∥F (11)

2.4. MixUP Knowledge Distillation Loss (LMKD)

We represent mixup input and output as x̃ij = λxi + (1 −
λ)xj and ỹij = λyi + (1 − λ)yj . Here (xi, yi) represents
image and pseudo label pairs sampled from ith domain. Let
student model output for mixup input (x̃ij) is P̃ij which can
be shown as P̃ij = δk(hl(gl(x̃ij))). We show the expansion



Figure 3: t-SNE plot obtained using sample features from
multiple domains are passed through the CoNMix’s MTDA
model (student network) feature extractor. We can observe
that the samples from different domains but belonging to
same classes are grouped together.

of LMKD in Eq. 12.

LMKD = LPl

CE(x̃ij , ỹij)

= −
∑

ỹij log P̃ij

= −
∑

(λyi + (1− λ)yj) log P̃ij

= −λ
∑

yi log(P̃ij)

− (1− λ)
∑

yj log(P̃ij)

LMKD = λ× LPl

CE(x̃ij , yi) + (1− λ)× LPl

CE(x̃ij , yj)
(12)

3. Experiments
3.1. Visualization of Multi Domain Features

We visualise the feature representation of multi-domain
samples using t-SNE plots 3. We can observe that the sam-
ples from same classes are grouped together irrespective of
the domains they come from. It further shows the effective-
ness of representation learned using student network in our
proposed framework.

3.2. Comparison with Additional Backbones

To further investigate the role backbone in our proposed
framework, we perform adaptation using EfficientNetV2-
B3 (14M param) as the CoNMix backbone. We ob-
tained an accuracy of 69.1% for Office-Home, which is
3% lesser w.r.t RN50 and 7% lesser w.r.t DeiT-S backbone.
For further analysis, we change the CoNMix backbone to

EfficientNetV2-S (22M param, with better ImageNet accu-
racy compared to DeiT-S) and obtained average accuracy
of 73.9%, which is 1.8% higher w.r.t RN50 but 2.2% lesser
w.r.t DeiT-S. These observations reaffirm our analysis that
the transformer based backbone provides more meaning-
ful representation compared to their CNN counterparts for
solving adaptation tasks.

3.3. Source Free Results for DomainNet

SF-STDA results: We can observe from Table. 1 that CoN-
Mix is able to achieve state-of-the-art results for source free
single target domain adaptation task. One important re-
sult to highlight is that CoNMix shows an improvement of
0.3% over CDTrans [32], whereas CDTrans requires source
dataset during domain adaptation. Given the large-scale na-
ture of DomainNet dataset, this gain for source-free adap-
tation task is significant. For VisDA dataset, there is only 2
domains hence MTDA is not possible. We achieved 84.4%
on VidDA as it can be seen in Table. 4.
SF-MTDA results: For source-free multi target domain
adaptation, we use Vision Transformer (VT) [6] backbone
as Teacher network and ResNet101 backbone as Student
network. We perform additional experiment by changing
the student network as Vision Transformer. Please refer to
Table. 6 for the detailed results. Interestingly, our proposed
approach CoNMix (VT) outperforms SOTA results on Do-
mainNet by a margin of 3.3% even though we do not have
access to labeled source dataset. Finally, through our ex-
tensive experiments, we observe that we achieve the best
performance when both the student and teacher network’s
backbones are vision transformers (VT). We have also eval-
uated on VisDA dataset in Table. 4.

3.4. Open Domain Test

The aim of open domain test is to check how the model
performs when subjected to an unseen domain i.e, the do-
main whose samples are available only during test time and
not available for target adaptation. For this study we divide
all the domains into three parts. We assign one domain as
source S, other domain Ti for testing (will not be used dur-
ing target adaptation) and the remaining domains we use for
target adaptation (T1, T2, . . . , Ti−1, Ti+1, . . . , Tn) where n
is the total number of target domains. We show the ob-
tained results in Table. 5. Here, Ar→ Cl implies that we
perform the adaptation experiment by keeping Art domain
from Office-Home dataset as source and use Clipart as un-
seen domain for test. The target domains used for adap-
tation in this settings are all other domains (Rw,Pr) except
Art and Clipart domain. Please note that the model has no
access to unseen test domain during adaptation and it is
used only for inference. Therefore this analysis is important
for analyzing the generalization capability of our proposed
approach. Table. 5 also shows the effectiveness of using



Method SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

Source train (DeiT-S) ✓ 51.7 74.2 79.3 62.6 72.5 74.7 64.0 47.5 79.6 69.9 49.8 80.9 67.2
CoNMix (Hard Distil λ = 1) ✓ 52.5 75.6 78.3 68.6 74.3 78.1 69.1 51.8 77.0 65.8 51.3 74.2 68.1
CoNMix (MixUp Distil λ ̸= 1) ✓ 53.9 77.0 79.7 69.7 75.3 78.4 70.5 54.0 77.7 68.7 54.0 74.1 69.4

Table 5: Open Domain test Accuracy (%) on Office-Home dataset. CoNMix achieves highest Average accuracy. This experiment shows
that the proposed approach can generalise over unseen target domains.We can clearly observe that CoNMix which uses MixUp KD (MKD
i.e, λ ̸= 1) is able to generalise better for unseen target domains. All experiments are performed using DeiT-S backbone.

Method SF Cli. Inf. Pai. Qui. Rea. Ske. Avg

SE [7] ✗ 21.3 8.5 14.5 13.8 16.0 19.7 15.6
MCD [27] ✗ 25.1 19.1 27.0 10.4 20.2 22.5 20.7
DADA [22] ✗ 26.1 20.0 26.5 12.9 20.7 22.8 21.5
CDAN [17] ✗ 31.6 27.1 31.8 12.5 33.2 35.8 28.7
MCC [11] ✗ 33.6 30.0 32.4 13.5 28.0 35.3 28.8
CDAN+DCL [25] ✗ 35.1 31.4 37.0 20.5 35.4 41.0 33.4
CGCT [25] ✗ 36.1 33.3 35.0 10.0 39.6 39.7 32.3
D-CGCT [25] ✗ 37.0 32.2 37.3 19.3 39.8 40.8 34.4
Source train (RN101) ✓ 25.6 16.8 25.8 9.2 20.6 22.3 20.1
CoNMix (RN101) ✓ 41.8 29.2 39.9 17.5 32.7 41.2 33.7
CoNMix (VT) ✓ 46.7 37.6 44.6 18.3 35.2 43.7 37.7

Table 6: Accuracy (%) for SF-MTDA on DomainNet dataset.
Only methods in shared region are source-free. Only methods
within Shaded regions are Source-Free. Magenta represents the
best performance for given split across all Source-Free methods.
Interestingly, our Source-free approach outperforms the methods
which access the labeled source data during target adaptation.

MixUp Knowledge Distillation (MKD) for distilling knowl-
edge from multiple SF-STDA teacher models. Since the
average accuracy of CoNMix which uses MKD (λ ̸= 1) is
greater than source only training hence we can say that stu-
dent model isn’t memorizing the teacher’s prediction. We
also checked the variant of MKD which uses simple hard
distillation methods (λ = 1). We can observe that CoN-
Mix which uses MKD (λ ̸= 1) is able to generalise better
over unseen domains because MixUp creates an intermedi-
ate domains and acts as a implicit regularizer. MixUp has
already been shown to be effective when used with Vision
Transformers [4]. Experiments of Table. 5 shows that CoN-
Mix+MKD has better domain generalization capability and
therefore, it would be interesting to explore further in this
direction.

3.5. Loss ablation study

To gauge the effect of our proposed loss functions on
two competitive backbone, we sequentially add all the loss
components used in CoNMix and show their result in the
Table. 7. We can observe that the proposed loss LNM for
source-free adaptation task, works better with DeiT back-
bone compared to its ResNet50 counterpart. As expected,
the performance of LPl

CL and LCons individually is poor due
to their inability to handle noise present in the pseudo la-
bels. Further, We perform an experiment using DeiT back-
bone by omitting LNM and using only LPl

CE + LCons. We
can observe from the Fig. 5 that the model performance on

LNM LCons LPl

CE DeiT RN50

✓ 6.3 19.3
✓ 3.8 13.8

✓ 59.5 50.2
✓ ✓ 60.3 55.6
✓ ✓ ✓ 63.8 57.6

Table 7: Analysis for adaptation performance when loss compo-
nents are introduced sequentially for Ar → Cl adaptation task of
Office-Home dataset. We compare the effect of competitive back-
bones on proposed CoNMix framework and observe that the Vision
Transformer is more suitable for the proposed loss.

adaptation task drops as the training progresses.

3.6. Performance analysis for NM and IM

We define diversity as entropy measures over expected
per-class prediction probability (Pc) and denote it as H =
−
∑K

c=1 Pc logPc, where Pc = 1
N

∑N
i=1 P

i
c , N is the total

samples, K is total classes). Higher diversity implies ex-
pected per-class prediction distribution should be closer to
uniform distribution therefore, higher entropy score is de-
sirable. We analyse diversity for information maximization
(IM) as well as nuclear-norm maximization (NM) in Fig. 2
and observe that the NM provides better diversity compared
to IM. We also provide comparative analysis using different
metrics such target accuracy, pseudo label accuracy for NM
and IM loss in Fig. 1 and showcased the benefits of NM
over IM. NM provides better class-discriminability as well
better diversity in its formulation, which is crucial for its
improved performance against IM.

3.7. Analysis using Grad-CAM visualization

To have better class-discriminability and domain-
transferability, it is important that the network gives more
importance to salient object of interest and discard highly
domain-dependent components such as background infor-
mation. Background information can be the reason for its
spurious correlation with the model predictions and it can
impact the overall model performance [31]. We plot the
Grad-Cam Visualization [28] using target adapted weights
for ResNet as well as Vision Transformer based back-
bone in Fig.4, we observe that Vision Transformer cap-



Figure 4: Grad-CAM visualization. The above visualization is obtained using two backbone for SF-STDA adapted model on Office31
dataset with Amazon → Dslr source-target pair. (Top) Grad-CAM visualization using Vision Transformer (Deit-S) backbone shows that
the model is able to focus mainly on the salient object of interest i.e, foreground and mostly discards the background. (Bottom) Grad-CAM
visualization using ResNet-50 backbone is not able to discard background information effectively. Therefore, the learned representation
using Vision Transformer will have better domain-transferability and class-discriminability.
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Figure 5: Plot for Pseudo label accuracy and Target Accuracy
when we only use LPl

CE and LCons. We can observe that the final
test accuracy decreases as training proceeds. This is mainly be-
cause unlike LNM , LPl

CE and LCons can not handle noise present
in the pseudo label.

tures precise details of the important salient object of inter-
est and discard the domain-dependent background informa-
tion. ResNet based backbone gives importance to the back-
ground along with the foreground object of interest. There-
fore, it may lead to poor class-discriminability and domain-
transferability. This analysis further strengthens the choice
of Vision Transformer based backbone for solving domain
adaptation tasks.

3.8. Effect of Label Smoothing

Muller et al. highlights the effect of label smoothing
on generalization and learning speed deep neural network

Src Target Test Accuracy

Cl Ar Ar, Pr, Rw 73.5
Cl Ar, Rw Ar, Pr, Rw 79.1
Cl Ar,Pr Ar, Pr, Rw 79.4
Cl Ar, Pr, Rw Ar, Pr, Rw 81.4

Table 8: Effect of the STDA model when we introduce more
number of domains. The model is better able to generalise bet-
ter when more domains are taken as target dataset.

[19] due to implicit regularisation. It is also adopted dur-
ing source training for solving many unsupervised domain
adaptation as well as source-free domain adaptation tasks.
To verify the effect of label smoothing on source training,
we replaced the soft labels with their one hot class repre-
sentation. We take this source trained model and perform
source-free adaptation. We obtained average performance
of 74.2 % Office-Home dataset. Here, we observe a drop of
≈ 1.8% for source-free STDA task when compared the situ-
ation when we use label smoothing during source-training.
This indicates the significance of label smoothing for solv-
ing source-free tasks.

3.9. Effect of Seed on Model Performance

We analyse the effect of different seeds on SF-STDA
task on Office-31 and Office-Home dataset. We observes
small standard deviation of 0.1 and 0.2 on average model
performance across different seeds for Office-31 and Office-
Home dataset respectively. We performed this analysis for



all the task of Office-31 dataset and Real-World to others
task for Office-Home dataset. We have added the experi-
ment results in Table. 9 & 10.

4. Training Details
In this section, we discuss image augmentation and hy-

perparameter details used in our work.

4.1. Augmentation Details

Data Augmentation is an artificial technique used to cre-
ate transformed versions of images from existing training
examples and leads the model to improve performance and
generalize well on unseen examples. To enhance the gener-
alizability of our model, we use two types of augmentations
i.e. weak augmentation and strong augmentation. In weak
augmentation, we transform the image by random cropping
or flipping or its combination. To produce strong augmenta-
tions, we transform the image by employing RandAugment
[5].

4.2. Hyperparameter Details

In this section, we discuss the evaluation protocol, and
hyperparameter search. We perform random search for hy-
perparameter using wandb [3] sweep.
Evaluation Protocol: For evaluating the model perfor-
mance, we use classification accuracy as our evaluation
metric. We compute classification accuracy on unlabelled
target dataset for STDA. For multi-target domain adapta-
tion, we report average classification accuracy on the union
of target datasets. For e.g, Amazon→ rest (i.e, Webcam ∪
Dslr) we report average accuracy on (Webcam ∪ Dslr).
Hyperparameter search: We have three param-
eters λ1, λ2 and λ3 for each loss component
LNM ,LPl

CE and Lcons respectively and an initial learning
rate lr. Based on performance evaluation using random
search we choose the optimal values for λ1, λ2 and λ3 and
lr. The learning rate (lr) is set to 5e-3 for Office-Home,
3e-3 for Office-31 and 1e-3 for Office-Caltech, VisDA and
DomainNet. λ1 is set to 4.0 for Office-Home, Office-31
and Office-Caltech, 0.5 for VisDA and 7.0 for DomainNet.
λ2 is 0.2 for Office-Home, Office-31 and VisDA, 1.0 for
Office-Caltech and 0.6 for DomainNet. λ3 is equal to 0.2
for all datasets. α in PLR is set to 0.9 for all the datasets.

5. Dataset Details
We provide the detailed instruction of the datasets used

in our experiments in Table 2. Additionally, we provide the
number of samples in each domain used for training the net-
work on datasets like Office-31 [26], Office-Caltech, Office-
Home [30] and large-scale dataset like DomainNet [21] and
VisDA-2017 [23]. Please note that, for the DomainNet there
is a separate training and test split for each domain.

6. Broader Impact of Domain Adaptation

Domain Adaptation generally works without strong su-
pervision and is targeted toward making a model more gen-
eralized and not tied to any particular dataset. Therefore,
any work along this direction is bound to have some posi-
tive impact, thereby increasing the deployed technology’s
credibility. Domain Adaptation work like ours acts as a
bridge between machine learning driven research and real-
world applications by accounting for existing domain shifts.
Source-free paradigm of domain adaptation allows to ex-
tend it for the applications where data privacy is of utmost
importance.

Seed A→D A→W D→A D→W W→A W→D Avg

2060 92.8 91.7 77.5 98.2 75.4 100 89.3
2080 91.0 92.7 77.6 98.2 76.6 100.0 89.4
2100 92.8 91.6 78.1 98.0 76.7 100.0 89.5

92.2±1.1 92±0.6 77.7±0.3 98.1±0.1 76.2±0.7 100.0 ±0.0 89.4±0.1

Table 9: SF-STDA results on Office-31 dataset for different seed
values. We observes standard deviation of 0.1 on average model
performance across different seeds, which indicates the stability of
model performance.

Seed Rw → Ar Rw → Cl Rw → Pr Avg

2060 75.3 62.0 86.0 74.4
2080 75.6 61.0 86.0 74.4
2100 74.8 62.1 85.5 74.1

75.2 ±0.4 61.7±0.6 85.8±0.3 74.2±0.2

Table 10: SF-STDA results on Office-Home dataset for differ-
ent seed values. We observes standard deviation of 0.2 on average
model performance across different seeds, which indicates the sta-
bility of model performance.
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