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1. Training Details
1.1. Hyperparameters

We trained the models for 200 epochs with a starting
learning rate (LR) of 0.1 and a cosine annealing LR sched-
uler [5]. We used the SGD optimizer with a weight decay
and momentum value of 5e − 4 and 0.9, respectively. For
CIFAR-10, CIFAR-100, and SVHN we used a batch-size of
128 and for STL-10 which has a comparatively larger reso-
lution (96× 96 as image height/width compared to 32× 32
of others), we used a batch-size of 64. We used half of each
image-batch as clean and the remaining half as perturbed
(using PGD-7 attack). For test-time random autoattack [1]
generation we used L∞ norm with ε as 8/255. To repro-
duce the results with OAT and OATS we used the official
repository of [6] and used their recommended λ distribu-
tion, encoding dimension, sampling scheme as well as σ
value for attack.

1.2. ImageNet Training

To train on ImageNet dataset on limited compute re-
sources, we first sampled 100 classes from it, with 500 train-
ing and 50 test samples from each class, each with resolu-
tion of 224 × 224 × 3. We then trained a ResNet18 on the
sampled subset of ImageNet with FLOAT for 60 epochs.
We used multi step LR scheduler that decayed by a factor
of 0.1 respectively at epoch 30 and 45. We used a training
batch size of 50 and partitioned each batch equally to cre-
ate clean and adversarial samples. To create train and test
adversarial samples we used similar adversarial strengths as
other datasets.

1.3. Models

We used ResNet34 to evaluate CIFAR-10 and CIFAR-
100, WRN16-8 to evaluate SVHN, and WRN40-2 to evalu-
ate STL10. Table 1 shows the models’ parameter and FLOP
count (contributed by the convolutions and FC layers as
they attribute to majority of the FLOPs and parameters).

∗Part of the work was done when the first author was with USC.

Table 1. Model parameters and FLOPs details.
Model type Parameters (M) FLOPs (G)

OAT FLOAT OAT FLOAT
ResNet34 31.4 21.28 1.18 1.165
WRN40-2 3.22 2.25 3 2.96
WRN16-8 15.43 10.97 2.1 2.01

1.4. Trained Scaling Factors

The trained noise scaling-factor αl for each layer of a
FLOAT model is shown in Fig. 1. The αl values are gener-
ally high at the initial layers of the models while and reduce
to near zero at later layers. [3] has also observed a similar
trend in trained alpha values while training targeting only
robustness.

Figure 1. Trained noise scaling factor value (layer-wise) for (a)
ResNet34 on CIFAR-10, (b) ResNet34 on CIFAR-100, and (c)
WRN40-2 on STL10.

1.5. Alternate Results Plots in Terms of λ vs. Accu-
racy

To bolster Fig. 7 in the original manuscript, Fig. 2
show an alternate view of the CA-RA comparisons between
FLOAT, OAT, and PGD-AT.

1.6. Training Time as a Function of Size of Sλ used
for training.

The comparison of training times of OAT and FLOAT
as a function of different numbers of λs is shown in Fig.
3. Because FLOAT always has two possible training λs,
the time is constant. However, for OAT, the training time
increases when supporting more training λs. Note, in the



Figure 2. Comparison of trade-off between accuracy and robustness of FLOAT, OAT, and PGD-AT. (a)-(c) and (d)-(f) show CA and RA
plots vs different λ values, respectively. The values corresponds to the mean ± std error for each point.

main manuscript, we report the training time comparisons
for OAT training with four training λs (0.0, 0.2, 0.7, 1.0).

Figure 3. Comparison of per epoch normalized training time be-
tween FLOAT and OAT for different number of OAT training λs,
on (a) CIFAR-10, (b) SVHN, and (c) STL10. Note, lower nor-
malized value implies faster training time. meaning better training
efficiency.

2. More Analysis on Pruned Models
We now show per layer parameter density for a specific

target global density d. In particular, Fig. 4 shows the
layer-wise density of non-zero weight. As we can see in
the Fig, the earlier layers generally have higher parameter
density (for both the densities). This tread is similar to that
observed in [4]. Also, earlier literature have used the pa-
rameter density as a proxy of the layer sensitivity [4, 2].
Here sensitivity of a layer can be measured by the accuracy
reduction caused by pruning a certain ratio of parameters
from that layer. Thus, we can use FLOATS as an automated
to evaluate layer-sensitivity for a target d eliminating the
need for heavy human works to tune the sparsity ratios as
hyper-parameters.

Fig. 5 shows the density of non-zero channel present per
layer for a model pruned via irregular and channel prun-

Figure 4. Per layer parameter density plot for two different target
parameter density (d) with irregular pruning. We used WRN40-2
on STL10 for training.

ing. Interestingly, as shown in the figure, irregular prun-
ing keeps the channel density close to 1.0 for all the layers,
while channel pruning can reduce the density to ∼0.1 for
some layers. We attribute this large reduction of channels
for some layers to the non-significant accuracy drop of the
channel pruned models compared to the baseline.

2.1. FLOAT and FLOATS Slim Training Algo-
rithms

Alogirthm 1 and 2 describes the training algorithms
of FLOAT and FLOATS slim respectively. In particular,
FLOATS slim has an additional loop running over the set of
SFs that the network can dynamically slim down to during
inference.



Figure 5. Per layer channel density for irregular vs channel pruning
for the same target parameter density (d) of 0.3. We used WRN40-
2 on STL10 for training.

Algorithm 1: FLOAT Algorithm
Data: Training setX∼D, model parameters Θ, trainable

noise scaling factor α, binary conditioning
parameter λ, mini-batch size B.

1 Output: trained model parameters Θ, α.
2 for i← 0 to to ep do
3 for j← 0 to nB do
4 Sample clean image-batch of size B/2 (X0:B/2,

Y0:B/2) ∼D
5 LC ← computeLoss(X0:B/2,Θ, λ =

0,α;Y0:B/2) // condition to use weights w/o noise

6 X̂B/2:B ←
createAdv(XB/2:B,YB/2:B) // adversarial image

7 // creation
8 LA ← computeLoss(X̂B/2:B,Θ, λ =

1,α;YB/2:B) // condition to use transformed weights

9 L ← 0.5 ∗ LC + 0.5 ∗ LA

10 updateParam(Θ,α,∇L)
11 end
12 end

3. Reproducibility Statement
We have detailed our training algorithms for both

FLOAT and FLOATS slim in Supplementary Algorithm
1 and 2, respectively. We have further provided de-
tailed hyperparameter and model information in the main
manuscript and further additional details in the Supplemen-
tary section 1.1. Finally, the code for this project will be
made publicly available upon acceptance of the paper.
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