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This supplement is outlined as follows. References to the main study (Section, Equations, Figures and Tables) are high-
lighted in blue. Section 1 describes the details of the network architecture in Sec. 3 of the main study. Section 2 describes
the details of our independently acquired real-world and generated synthetic datasets in Sec 3.4 of the main study. Section 3
describes the details of the experiments discussed in Sec. 4 of the main study. This includes simulation data generation and
demosaicing methods as well as detailed quantitative and qualitative experimental results.

1. Network architecture details
1.1. RGB refinement network (RGBRN)

Figure 1 shows the details of the RGBRN discussed in Sec. 3.3 of the main study. The RGB image, stokes vector, and
polarization pixel masks are combined in the direction of the input channel. The network consists of four refinement blocks,
which are primarily based on full convolution without resolution reduction to learn the difference from the input RGB image.
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(a) Network overview.
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(b) Refinement block.
Figure 1. Details of RGB refinement network (RGBRN). (a) Network overview, and (b) refinement block.

1.2. Polarization compensation network (PCN)

In this section, the details of the PCN discussed in Sec. 3.3 and Fig. 6 of the main study are described in detail. Each
encoder and decoder block in the network is organized as shown in Fig. 2. The encoder block first performs convolution to
generate the features to be connected to the decoder and then performs convolution with a stride set to 2 to generate low-
resolution features. The decoder block generates high-resolution features via transposed convolution with a stride set to 2.
Moreover, although omitted in the main study, the polarization information Ŝ1,2 is obtained as the final output by blending
the first and second outputs, Ŝ1st

1,2 and Ŝ2nd
1,2 , with their respective confidence levels, Ĉ1st and Ĉ2nd, using Eqn. 1, as follows.

Ŝ1,2 =
eĈ

1st · Ŝ1st
1,2 + eĈ

2nd · Ŝ2nd
1,2

eĈ1st + eĈ2nd
. (1)

2. Dataset details
This section discusses the datasets in Sec. 3.4 of the main study in detail. A comparison with other published datasets

that are more detailed than Tab. 2 in the main study is presented in Tab. 1. Herein, the vertical and horizontal resolution
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(a) Encoder block (E10,E20).

33

High 
resolution

feature

+

3 × 3 Conv
(Stride=1)
BN
ReLU
3 × 3 Conv
(Stride=1)
BN

ReLU

Low 
resolution

feature

+
ReLU

3 × 3 Conv
(Stride=2)
BN
ReLU
3 × 3 Conv
(Stride=1)
BN

Encoder Block (𝐄𝐄𝟏𝟏𝟏𝟏~𝟏𝟏𝟏𝟏, 𝐄𝐄𝟐𝟐𝟐𝟐~𝟐𝟐𝟐𝟐)

Connect
to decoder

High 
resolution

feature

5 × 5 Conv
(Stride=1)
BN
ReLU

Low 
resolution

feature

+
ReLU

3 × 3 Conv
(Stride=2)
BN
ReLU
3 × 3 Conv
(Stride=1)
BN

Encoder Block (𝐄𝐄𝟏𝟏𝟏𝟏, 𝐄𝐄𝟐𝟐𝟐𝟐)

Connect
to decoder

Decoder Block
(𝐃𝐃𝟏𝟏𝟏𝟏~𝟏𝟏𝟏𝟏, 𝐃𝐃𝟐𝟐𝟐𝟐~𝟐𝟐𝟐𝟐)

Low 
resolution

feature

High 
resolution

feature

ReLU
BN
5 × 5 ConvTrans
(Stride=2)

Conv: Convolution
ConvTrans: Transposed 
Convolution
BN: Batch Normalization

Decoder Block
(𝐃𝐃𝟏𝟏𝟏𝟏~𝟏𝟏𝟏𝟏, 𝐃𝐃𝟐𝟐𝟐𝟐~𝟐𝟐𝟐𝟐)

Low 
resolution

feature

High 
resolution

feature

ReLU
BN
5 × 5 ConvTrans
(Stride=2)

(b) Encoder block (E11∼15, E21∼25).
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(c) Decoder block.
Figure 2. Details of the polarization compensation network (PCN). (a) Encoder block (E10,E20). (b) Encoder block (E11∼15,E21∼25).
(c) Decoder block (D11∼15,D21∼25).

(Resolution), type of scene (Level), and type of accompanying ground truth data (Ground truth) have been compared. All of
our datasets consist of scenes, and the depth, surface normals, reflectance and segmentation masks of the synthetic datasets
were simultaneously generated, as shown in Fig 3.

Further, we have described the details of the synthetic dataset. Herein, a polarization-reflective ray-tracing renderer was
implemented and used. As mentioned in the main study, the floorplans, camera positions, and objects were procedurally
generated. Furthermore, 110 floorplans and 100 data for each floorplan were generated. The camera field of view (FOV) was
randomly selected from 30◦ to 120◦, the F value was randomly selected from 0.8 to 8, and the camera roll was randomly
selected from −15◦ to 15◦. Half of the scenes were set up as day and the other half as night. Additionally, an outdoor
environment map was set up as the light source for the day scenes. The number of SPP (sample per pixel) was set to 100,
and the maximum number of ray bounces was set to 7. The NVIDIA OptiX Denoiser [2] was used to remove the noise and
improve the quality of RGB images. It takes approximately 8 s to render 1.3 M (1216× 1024) data on an NVIDIA RTX3090
GPU, and 11000 data can be generated in approximately 1 d.

We acquired real-world datasets by two methods: using a polarization camera and turning a polarizer. Figure 4 shows
examples of each dataset. Using a polarization camera to acquire images is easy; however, the resolution of the polarization
camera is limited and the data quality is not high because of the demosaicing artifacts, as shown in Fig. 4(a). If a polarizer is
rotated in front of the RGB camera, high-quality data equivalent to that of a normal high-resolution camera can be acquired,
as shown in Fig. 4 (b); however, large amounts of data cannot be acquired rapidly because obtaining one image takes several
minutes.

Table 1. Comparison between different polarization datasets

Dataset Level Collection Size Resolution Ground truth

Ba [1] Object Polarization Camera 263 1224× 1024 RGB, Polarization, Surface Normal
Lei [4] Scene Polarization Camera 522 1224× 1024 RGB, Polarization, Surface Normal, Depth

Ono [5] Scene Polarization Camera 69 2448× 2048 RGB, Polarization
Scene Polarizer Rotation 13 2080× 2080 RGB, Polarization

Ours
Scene Synthetic 11000

1216× 1024 &
768× 576

RGB, Polarization (S1,2), Surface Normal,
Depth, Reflectance, Segmentation Mask

Scene Polarization Camera 811 2448× 2048 RGB, Polarization
Scene Polarizer Rotation 238 5472× 3648 RGB, Polarization



(a) RGB image (b) S1 component (c) Reflectance

(d) Segmentation mask (d) Surface normal (e) Depth
Figure 3. Details of the synthetic dataset. (a) RGB image (S0 component), (b) S1 component, (c) reflectance, (d) segmentation mask, (d)
surface normal, and (e) depth.

(a) Polarization camera (b) Polarizer rotation
Figure 4. Details of real-world datasets. (a) Polarization camera, and (b) polarizer rotation.



3. Experiment details
3.1. Dataset and implementation details

This section discusses the simulation method used to generate the raw data for the sparse polarization sensor in each
dataset that was used in Sec. 4.1 of the main study.

Raw image generation from synthetic dataset: The synthetic dataset consists of RGB data and the S1,2 ground truth,
as shown in Fig 5 (a). The RGB image and S1,2 are grayed and the four-polarization angle image is calculated to reflect
the sensitivity difference. Each pixel from the RGB image and the generated four-polarization angle image are selected to
generate raw data.

Raw image generation from polarization camera dataset: A conventional polarization camera produces a raw image, as
shown in Fig. 5 (b). Demosaicing is performed to generate an RGB image and a four-polarization angle image. Subsequently,
the four-polarization angle image is multiplied by the sensitivity difference gain. Finally, each pixel from the RGB image
and the generated four-polarization angle image is selected to generate the raw data.

Raw image generation from polarizer rotation dataset: A polarizer is placed on the entire surface of a regular RGB
camera and rotated to obtain an RGB image with four-polarization angles, as shown in Fig. 5 (c). A non-polarized RGB
image is generated by averaging the RGB values of the four-polarization angles. The RGB images of each of the four-
polarization angles are grayed to produce a one-channel four-polarization angle image. Next, the four-polarization angle
image is multiplied by the sensitivity difference gain. Raw data is generated by selecting each pixel from the RGB image
and the generated four-polarization angle image. Finally, as the raw image generated here is used for evaluation purposes, it
is noised according to the noise model of the sensor.

3.2. Demosaicing

This section details the demosaicing process implemented to obtain RGB and four-polarization angle images in Sec. 3.3 of
the main study. Demosaicing is a method that considers the pixels near the target pixel and their spatial frequency [3, 5]. For
sparse polarization sensors, the same process is used for unpolarized pixels to generate RGB values, and four-polarization
angle pixels are interpolated in the range of 2× 2 to generate the sparse stokes vector, as shown in Fig. 6.

3.3. Additional assessment results

This section discusses the additional results of the evaluation in Sec 4.2 of the main study.

Ablation study: Table 2 presents a comparison of the ablation study in Tab 4 of the main study for different percentages
of polarization pixels. The results show that the higher the ratio of polarization pixels, the more effective FTB and AFA
are. Conversely, when the percentage of polarized pixels is low (r = 1/64), FTB and AFA are not as effective. This may
be because the extremely low number of polarization pixels limits the generation of valid features for completion, thereby
limiting the effectiveness of FTB and AFA. Therefore, we did not implement FTB and AFA when the percentage of polarized
pixels was very low.

Comparison with depth completion and upsampling networks: Table 3 presents a comparison of the proposed method
with other networks discussed in Tab. 5 of the main study for different percentages of polarization pixels. Furthermore, the
computation time has been additionally described. The results show that the smaller the percentage of polarization pixels,
the more effective our method is. When the percentage of polarization pixels is high, although NLSPN may perform slightly
better than our method for some indices, it requires more computation time. Figure 7 and 8 compare the results of our
method with other methods (conventional polarization sensors, basic methods (Eqn. 2 and Eqn. 3 of the main study), and
other networks). The effectiveness of our method can be qualitatively confirmed.

Comparison between the synthetic and real-world datasets: Table 4 presents a comparison of the datasets discussed in
Tab. 6 of the main study with different percentages of polarized pixels. The trend of the parameters is the same for different
percentages of polarized pixels.

Additional qualitative evaluation results: The qualitative evaluation results of our method in various scenes, which could
not be described in the main study due to space limitations, are shown in Fig. 9,10,11,12,13,14,15,16,17, and 18. The
effectiveness of our method for conventional polarization sensors can be confirmed.
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(b) Raw image generation for polarization camera dataset
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(c) Raw image generation for polarizer rotation dataset
Figure 5. Details of raw image generation for the: (a) synthetic, (b) polarization camera, and (c) polarizer rotation datasets.
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Figure 6. Interpolation of polarization pixels. Pixel values for four polarization angles are interpolated in a 2×2 region where polarization
pixels are present.

Table 2. Ablation study. Additional results.

Polarization
sensor r Operation

S0,1,2

RMSE ↓
[×10−3]

S1,2

RMSE ↓
[×10−3]

DoLP
PSNR ↑
[dB]

AoLP
Error ↓
[◦]

Conventional 0

Baseline (four polar comp.) 12.830 11.068 17.32 24.99
+ SNA (S1,2 comp.) 14.563 4.101 26.54 12.97
+ RGBRN 6.931 3.909 26.10 14.77
+ FTB 6.915 3.865 26.92 13.06
+ AFA 6.915 3.854 27.22 12.35

Sparse

1
4

Baseline (four polar comp.) 10.948 10.574 16.57 31.70
+ SNA (S1,2 comp.) 10.328 4.046 26.94 12.31
+ RGBRN 4.974 3.979 26.75 13.43
+ FTB 4.952 3.952 26.81 13.14
+ AFA 4.881 3.824 27.41 12.36

1
16

Baseline (four polar comp.) 9.099 8.952 18.76 29.05
+ SNA (S1,2 comp.) 8.568 4.304 26.25 13.30
+ RGBRN 4.752 4.216 26.45 13.50
+ FTB 4.727 4.186 26.42 13.61
+ AFA 4.707 4.151 26.48 13.95

1
64

Baseline (four polar comp.) 8.746 8.794 17.27 32.98
+ SNA (S1,2 comp.) 8.110 4.952 24.80 16.02
+ RGBRN 5.033 4.791 25.19 15.56
+ FTB 5.080 4.853 25.01 16.04
+ AFA 5.032 4.801 24.85 17.39



Table 3. Comparison of the results obtained after replacing PCN with depth completion and upsampling networks in our network
architecture. Additional results.

Polarization
sensor r Method

S0,1,2

RMSE ↓
[×10−3]

S1,2

RMSE ↓
[×10−3]

DoLP
PSNR ↑
[dB]

AoLP
Error ↓
[◦]

Runtime
[ms]

Conventional 0

UNet 6.915 4.013 26.68 12.97 40.8
U2Net 7.120 4.277 25.11 15.42 160.6
FDSR 7.032 4.223 26.81 12.06 35.6
GuideNet 6.907 4.048 25.77 15.04 61.8
NLSPN 6.894 3.879 26.37 14.73 172.8
Ours 6.915 3.854 27.22 12.35 50.9

Sparse

1
4

UNet 4.986 4.013 26.46 13.91 41.0
U2Net 5.179 4.306 25.12 16.17 162.1
FDSR 5.191 4.389 25.87 14.02 35.7
GuideNet 4.984 4.021 25.79 14.33 71.3
NLSPN 4.848 3.788 27.40 13.13 172.9
Ours 4.881 3.824 27.41 12.36 50.6

1
16

UNet 4.974 4.568 25.00 16.31 41.0
U2Net 5.537 5.224 23.90 19.11 158.8
FDSR 5.128 4.837 25.12 15.48 36.0
GuideNet 4.859 4.390 25.59 15.62 68.7
NLSPN 4.905 4.470 23.97 20.20 172.8
Ours 4.707 4.151 26.48 13.95 50.9

1
64

UNet 6.526 6.872 21.96 31.74 41.1
U2Net 5.981 6.108 21.92 25.34 163.7
FDSR 5.570 5.615 23.84 18.74 35.6
GuideNet 6.241 6.255 16.32 33.34 67.4
NLSPN 6.402 6.564 21.05 26.48 173.1
Ours 5.033 4.791 25.19 15.56 50.5

Table 4. Comparison between real-world (R) and synthetic (S) datasets. Additional results.

Polarization
sensor r Data

Train
size

S0,1,2

RMSE ↓
[×10−3]

S1,2

RMSE ↓
[×10−3]

DoLP
PSNR ↑
[dB]

AoLP
Error ↓
[◦]

Conventional 0

R 729 21.578 4.731 25.60 13.88
S 729 8.836 5.177 24.47 15.62
S 10000 7.093 4.055 26.69 12.29
R+S 10729 6.915 3.854 27.22 12.35

Sparse

1
4

R 729 11.162 5.240 25.40 14.79
S 729 6.346 5.342 24.05 15.55
S 10000 5.137 4.093 26.58 13.11
R+S 10729 4.881 3.824 27.41 12.36

1
16

R 729 7.257 5.809 24.71 15.76
S 729 6.304 5.889 23.32 18.38
S 10000 4.975 4.471 25.81 14.41
R+S 10729 4.707 4.151 26.48 13.95

1
64

R 729 6.762 6.400 23.84 17.86
S 729 6.718 6.629 22.43 21.11
S 10000 5.431 5.305 24.57 16.35
R+S 10729 5.033 4.791 25.19 15.56



(Top) Conventional RGB
(Bottom) Our RGB

(a) Ground truth (b) Conventional (c) Sparse + Bilinear
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with PCN (Ours)
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with PCN (Ours)
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Figure 7. Scene1: Comparison with other methods. Evaluation at r = 1/16. The top is DoLP and the bottom is AoLP.
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with PCN (Ours)
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with FDSR

(i) Sparse + SNA
with GuideNet
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(k) Sparse + SNA
with PCN (Ours)

Figure 8. Scene2: Comparison with other methods. Evaluation at r = 1/16. The top is DoLP and the bottom is AoLP.
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Figure 9. Scene1: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.



Conventional

Sparse ×1/4

Sparse ×1/4
+ our compensation

Sparse ×1/16

Sparse ×1/16
+ our compensation

Sparse ×1/64

Sparse ×1/64
+ our compensation

(a) Sensor array (b) RGB (c) DoLP (d) AoLP
Figure 10. Scene2: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.
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(a) Sensor array (b) RGB (c) DoLP (d) AoLP
Figure 11. Scene3: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.
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(a) Sensor array (b) RGB (c) DoLP (d) AoLP
Figure 12. Scene4: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.
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(a) Sensor array (b) RGB (c) DoLP (d) AoLP
Figure 13. Scene5: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.
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Figure 14. Scene6: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.
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Figure 15. Scene7: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.
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Figure 16. Scene8: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.
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Figure 17. Scene9: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.
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Figure 18. Scene10: Comprehensive qualitative evaluation of conventional and sparse polarization sensors. The effectiveness of our
compensation is qualitatively demonstrated.
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