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Figure 1: Top row: Disparity estimates for well lit stereo image. Bottom row: Disparity estimates for extreme
low-light stereo image. Depth estimation done using (a) Simple pixel intensity correlation, (b) using non-deep
learning based SGM method and (c) using deep learning based LEAstereo. Most stereo methods, which are
designed for well-lit images, first estimate disparity and then use this information for the specific stereo task.
However, we see that computing disparity for very noisy, low-contrast low light images could be erroneous.

1 Transforming well-lit images into low-light images
In real low-light conditions, the noise affects the image quality right from the point of image acquisition by
the sensor. After the sensor acquisition, the image undergoes several transformations such as tone mapping,
white balancing and gamma decompression to produce the final RGB image or more specifically the sRGB
image. Thus, to transform well-lit camera images into low-light images we do not follow the crude approxi-
mation of simply darkening the sRGB image and adding White Gaussian noise. We rather follow the pipeline
proposed in [1] to first transform the well-lit sRGB images into demosaiced Linear RGB images, then add the
heteroscedastic noise and finally convert them back to sRGB images. As [1] was focused on well lit images,
we present a brief overview of sensor acquisition to understand the nature of heteroscedastic noise to simulate
low-light conditions.

Let ϕ be the number of photons striking the camera sensor. No sensor has 100% Quantum Efficiency
(QE) and the number of electrons e generated are given as follows,

e = QE · ϕ. (1)

The generated electrons then pass through an amplifier to convert electrons into pixel value p,

p =
e

gain
. (2)

In low-light conditions since the number of generated electrons are less, a lower value of gain is preferred,
lest the camera exhibits poor sensitivity.



Input Operation Output
——— Encoder ———

l, r: 512 × 512 × 3 conv(in=3, out=6, stride=1) l, r: 512 × 512 × 6
l, r: 512 × 512 × 6 Pixel UnShuffle l, r: 256 × 256 × 24
l, r: 256 × 256 × 24 conv(in=24, out=12, stride=1) l, r: 256 × 256 × 12
l, r: 256 × 256 × 12 Pixel UnShuffle l, r: 128 × 128 × 48
l, r: 128 × 128 × 48 conv(in=48, out=24, stride=1) l, r: 128 × 128 × 24
l, r: 128 × 128 × 24 Pixel UnShuffle l, r: 64 × 64 × 96

64 × 64 × 192 conv(in=192, out=64, stride=1) 64 × 64 × 64
64 × 64 × 64 Pixel UnShuffle 32 × 32 × 256
32 × 32 × 256 conv(in=256, out=128, stride=1) 32 × 32 × 128
32 × 32 × 128 conv(in=128, out=128, stride=2) 16 × 16 × 128
16 × 16 × 128 conv(in=128, out=256, stride=1) 16 × 16 × 256

——— Decoder ———
16 × 16 × 256 Pixel Shuffle 32 × 32 × 64
32 × 32 × 192 conv(in=192, out=128, stride=1) 32 × 32 × 128
32 × 32 × 128 Pixel Shuffle 64 × 64 × 32
64 × 64 × 96 ResBlock(in=96, out=96) 64 × 64 × 96
64 × 64 × 96 Pixel Shuffle 128 × 128 × 24

l, r: 128 × 128 × 48 conv(in=48, out=48, stride=1) l, r: 128 × 128 × 48
l, r: 128 × 128 × 48 Pixel Shuffle l, r: 256 × 256 × 12
l, r: 256 × 256 × 24 conv(in=24, out=12, stride=1) l, r: 256 × 256 × 12
l, r: 256 × 256 × 12 Bilinear Upsampling l, r: 512 × 512 × 12
l, r: 512 × 512 × 18 conv(in=18, out=36, stride=1) l, r: 512 × 512 × 36
l, r: 512 × 512 × 36 conv(in=36, out=3, stride=1) l, r: 512 × 512 × 3

Table 1: Feature maps propagating through our Hybrid U-net network architecture shown in Fig.1 of the main
paper. conv: 2D Convolution; ResBlock: Residual block; Pixel Shuffle: Upsampling operation introduced in
[4]; Pixel UnShuffle: Reverse Pixel Shuffle operation for downsampling; l/r: left/right view features.

There are two main sources of noise for p: a) Photon noise which is due to randomness in photon arrival
and b) Read Noise which is due to the imperfections in the electron read-out circuit. The arriving photons
follow a poisson distribution and so the mean and variance are both given by ϕ. Now using Eq. 1 and Eq. 2,
the variance due to photon noise in the pixel domain is given by,(

QE

gain

)2

· ϕ =
QE

gain
· p. (3)

The read-out does not depend on incoming electrons and generally modelled as gaussian noise with 0 mean
and fixed variance erms. erms is quite low for modern cameras. Due to the independent nature of photon
noise and read-out noise, the noisy image can be modelled as the following heteroscedastic distribution,

N
(

mean = p, variance = erms+
QE

gain
· p

)
(4)
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Enhanced left view GT left view Disparity computed Disparity computed
+ Object detection + Object detection using enhanced views using GT views
by Faster RCNN by Faster RCNN by LEAStereo by LEAStereo

Figure 2: More qualitative results by our method on the KITTI dataset. Apart from showing enhancement
results we also show the disparity computed using left/right enhanced views using LEAStereo (pre-trained
on well-lit KITTI images) and object detection by passing the enhanced left view through Faster RCNN [3]
(pre-trained on well-lit COCO dataset [2].)

In Eq. 4, p is the pixel value in the raw image. Most cameras demosaic this raw image using simple
interpolation formulations to get the Linear RGB image. Since, the KITTI and CityScape meta data does
not contain the type of interpolation done, nor could we find it from the datasheet, we approximate the raw
image with the Linear RGB image only. Finally, in Eq. 4, p belongs to low-light image, but our Linear RGB
is obtained from well-lit sRGB images. We thus first scale down the Linear RGB image and then sample the
noisy low-light pixels from the following distribution,

N
(

x

scale
, erms+

QE

gain
· x

scale

)
(5)

where x denotes the pixels of Linear RGB image obtained from well-lit images. The image thus obtained is
then converted back into sRGB image. As the lux value on a clear sunny day is atleast 500 lux and we aim
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for extreme low-light conditions like something around 20 lux, we use large scale factor. For example in the
main paper we showed results for scale = 40 and in Fig. 2 of this supplementary we show results when our
model is trained for low-light images generated using scale = 20.
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