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andres.almansa@parisdescartes.fr

Matias Tassano
Meta Inc.*

mtassano@meta.com

Abstract

Supplementary material.

1. Linearized PnP ADMM

In this section, we explain some theoretical results that
justify the convergence of our linearized-ADMM deep
plug-and-play algorithm. In particular, we explain that our
optimization problem is a particular use case of [5].

In this article, they study optimization problems of
the form:

min
x,z

g(x, z) + f(x) + h(z) s.t Ax+Bz = 0 (1)

with x ∈ Rp, z ∈ Rq .

The Lagrangian for such problem is defined as:

Lµ(x, z, u) =g(x, z) + f(x) + h(z) + ⟨u,Ax+Bz⟩ (2)

+
µ

2
∥Ax+Bz∥22

Applying the classical ADMM to the Lagrangian leads to
proximal operators that can be hard and computationally
expensive to compute. Instead, they propose to linearize
g(x, z)+ µ

2 ∥Ax+Bz∥22 in the (k+1)-th update leading to
the linear approximation

⟨x−xk,∇xg(xk, zk)+µAT (Axk+Bzk)⟩+
Lx

2
∥x−xk∥22.

(3)
They also replace g(x, z) + h(z) in the (k+1)z-th update by
its linear approximation

⟨z− zk,∇zg(xk+1, zk) +∇zh(zk)⟩+
Lz

2
∥z− zk∥22. (4)

*Work mostly done while Matias was at GoPro France.

Those linearizations lead to the following optimization al-
gorithm:

xk+1 = proxf/Lx
(xk − 1

Lx
(∇xg(xk, yk) +ATuk (5)

+ βAT (Axk +Bzk))),

zk+1 = (Lz − µBTB)−1(Lzzk −∇zg(xk+1, zk) (6)

−∇zh(zk)−BTuk − µBTAxk+1), (7)
uk+1 = uk + µ(Axk+1 +Bzk+1). (8)

Our problem belongs to this family of optimization prob-
lems with:

• g(x, z) = 0,

• f(x) = λΦ(x),

• h(z) = 1
2σ2 ∥Sz − y∥22,

• A = H ,

• B = −Id,

with S such that Sx = x ↓s.

We easily verify that Assumption 1 from [5] is fulfilled
since g = 0, h is quadratic and Im(H) ⊂ Im(−Id) = Rd.
Even if f(x) = λΦ(x) is unknown in our case (we
only know the denoiser Pβ which is assumed to be the
proximal operator proxβ2Φ of a certain function β2Φ), the
work in [2] ensures the existence of such a suitable Φ, as
long as Pβ is an MMSE denoiser. And this is (at least
approximately) the case, since neural Gaussian denoisers
are trained to minimize an ℓ2 loss.

Our version of the linearized ADMM differs from [5]
since we only apply the linearization in the x-update.
In fact, our z-update already has a closed-form without
linearization so we do not need to do an approximation.
The two variants of the linearized ADMM algorithm are
so similar that we expect to be able to adapt the proof
of Theorem 1 in [5]. This will be the subject of future
research, if needed. For the purpose of this paper, we do



not strictly need such a convergence result because we
do not use the iterative deep plug-and-play algorithm.
Instead we unfold a fixed number of iterations to define the
architecture that is trained end-to-end.

2. Proximal Descent on Data-Fitting Term in
Closed Form.

This section demonstrates how we get to the closed-
form of the z-update. We suppose that our images x and
y are vectorized (i.e. considered as column vectors). The
dimension of x is n × p × 3 and the dimension of y is
(n/s) × (p/s) × 3. Let the k-th entry of vector x denote
the ck-th channel of pixel coordinates (ik, jk), i.e. we iden-
tify xk in the vectorized representation with x(ik, jk, ck)
in the image array representation. Let S be the subsam-
pling operator seen as a matrix in the vectorized space, i.e.
Sx = x ↓s. The z-update is defined as the proximal opera-
tor on the data-term i.e.:

zk+1 = argmin
z

1

2σ2
∥Sz − y∥22 +

µ

2
∥z − (Hxk+1 + uk)∥22

(9)

= argmin
z

F (z), (10)

F (z) is the sum of two quadratic functions so we use the
first-order condition to find the argmin:

∇F (z) = 0 (11)

⇔ 1

σ2
ST (Sz∗ − y) + µ(z∗ − (Hxk+1 + uk)) = 0 (12)

⇔ (STS + σ2µId)z∗ = ST y + σ2µ(Hxk+1 + uk).
(13)

It is worth pointing out that (STS + σ2µId) is diagonal
and STS corresponds to an entry-wise multiplication mask
with ones at the sampled positions and zeros elsewhere (i.e.
(STS)k,k = 1{ik≡0 (mod s)}1{jk≡0 (mod s)}).

Finally, we can rewrite Equation (13) as:

z∗ = (STS + σ2µId))−1(ST y + σ2µ(Hxk+1 + uk)),
(14)

which in the image space gives:

(z∗)i,j =
(ST y + σ2µ(Hxk+1 + uk))i,j

σ2µ+ 1{i≡0 (mod s)}1{j≡0 (mod s)}
. (15)

3. Additional Results
In this section, we provide additional results of our

model. Figure 1 shows visual results of our model on dif-
ferent blur kernels. The main observation here is that our
model produces sharper results and more details. Also we

LR SwinIR BlindSR USRNet Ours GT

Figure 1: Visual comparison of the super-resolution perfor-
mance of the models with a scale factor of 2. The different
blur kernels are displayed in the LR images.

can observe that our model remains competitive even on
uniform blur kernels. Indeed, the third image is blurred by
a single kernel and we can see that the performance metrics
of our model is similar to those of USRNet that is one of the
state-of-the-art methods for such a use case. Table 1, pro-
vides additional quantitative results on our different tests.
We compare the pre-trained models provided by the source
code of each method to the same models that we retrained
on our dataset. Please note that the “Retrained” part of the
table is the same as Table 1 in our paper.

In particular, BSRGAN [7] uses an RRDB architecture
trained on DIV2K with different Gaussian blurs. IKC [3] is
the blind architecture that combined SFTMD + PCA non-
blind super-resolution network with a kernel refinement to
find the optimal blur kernel. We also test the blind ver-
sion of BlindSR [1] that is provided by the authors, un-
fortunately, this version is trained only using uniform blur
kernels. The weights of USRNet are not re-trained in our
comparison. The only difference with the author’s approach
is that we apply USRNet on each mask as described in the
paper. This table highlights the difficulty of doing a fair
comparison between the different models of the literature.
Without re-training, those models perform poorly since they
are trained using uniform blur kernels. However, we believe
that retraining them helps to efficiently capture the ability of
the models to super-resolve images with spatially-varying
blur without being biased by training data.



Table 1: Quantitative comparison on synthetic data.

Training Model Gaussian testset Motion testset
Metrics (PSNR↑, SSIM↑, LPIPS↓)

Scale x2 x4 x2 x4

Author’s
weights

Bicubic (22.52, 0.60, 0.57) (21.61, 0.55, 0.60) (21.74, 0.62, 0.39) (20.48, 0.56, 0.57)
BSRGAN [7] (22.85, 0.65, 0.3) (20.7, 0.54, 0.29) (21.23, 0.61, 0.27) (19.48, 0.53, 0.3)

IKC [3] None (21.64, 0.57, 0.48) None (19.51, 0.54, 0.38)
BlindSR [1] (22.97, 0.63, 0.43) None (22.01, 0.64, 0.3) None
USRNet [8] (22.64, 0.74, 0.28) (24.08, 0.72, 0.32) (24.37, 0.75, 0.17) (24.67, 0.72, 0.29)

Retrained

RRDB [6, 7] (23.38, 0.67, 0.41) (21.82, 0.57, 0.58) (23.11, 0.65, 0.36) (22.34, 0.60, 0.56)
SwinIR [4] (23.47, 0.67, 0.38) (23.01, 0.63, 0.44) (23.40, 0.67, 0.34) (22.70, 0.64, 0.44)

SFTMD+PCA [3] (23.76, 0.69, 0.33) (23.12, 0.64, 0.41) (25.15, 0.74, 0.25) (23.97, 0.67, 0.38)
BlindSR [1] (26.55, 0.79, 0.24) (25.11, 0.72, 0.34) (26.40, 0.79, 0.20) (24.54, 0.69, 0.35)

Ours (26.59, 0.78, 0.26) (25.37, 0.73, 0.31) (28.20, 0.85, 0.11) (25.36, 0.73, 0.28)

4. Study of the Algorithm

In this section, we analyze the behavior of our unfolding
algorithm and draw parallel to regular plug-and-play meth-
ods. Figure 2 highlights the hyper-parameters predicted by
our hyper-parameters network H for different scale factors
and the behavior of the model at different steps. We first ob-
serve that the pre-trained MMSE denoiser contained in the
D module no longer behave as MMSE denoiser but more
as an artefacts cleaner. Consequently, the β parameters that
is fed to the denoiser no longer acts as the noise level to
be removed but more as slider that remove more artefacts
as it grows bigger. The hyper-parameters predictor network
H(σ, s) learns a coarse to fine strategy. Specifically, in Fig-
ure 2b, the β corresponding to the artefacts removal inten-
sity decrease along with the iterations. On the other side,
in Figure 2c, γ which controls the step size of the deblur-
ring gradient descent from Equation ?? starts from a high
value and linearly decreases through the iterations. Finally,
in Figure 2a, α (which is inversely proportional to the quan-
tity of the low-resolution image that is re-injected to the cur-
rent super-resolution estimation) increases exponentially. It
means that the closer we are to the final step, the less we
inject the low-resolution to the current super-resolution es-
timate. Those strategy are very popular in deep plug-and-
play applications, the main advantage of our deep unfold-
ing architecture is that they were optimized for the task we
targeted by end-to-end training instead of being manually
tuned.
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