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1. Training and Architecture Details
As noted in Sec. 3.1, we use a positional encoding

function [8] on each dimension of the direction vector
d ∈ R3, to map this vector into a higher-dimensional
space before passing it as input to our radiance function
FΘ : (vs, γ(d))→ (c, σ), where

γ(p) =

(
sin
(
20πp

)
, cos

(
20πp

)
, · · · ,

sin
(
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)
, cos

(
2L−1πp

) ) . (1)

We use L = 4 in our experiments.

C(r) =

∫ tf

tn

T (t)σ(vs)c(vs,d)dt , (2)

T (t) = exp

(
−
∫ t

tn

σ(vs)ds

)
(3)

where vs = S(Vs,p) is the 64-dimensional sampled fea-
ture vector from the volume Vs for scene s at point p ∈ R3,
and S represents the trilinear sampling operation. The den-
sity values sampled from the network can thus be used to
determine the probability of a ray terminating at the sam-
pled point along the ray. In practice, following the exam-
ple of [6], we use a discretized approximation of this inte-
gral, using a 2-stage process in which we optimize a coarse
network Ĉc(r) that samples 64 points from evenly spaced
bins along the ray length, followed by sampling these points
plus another 64 points from our fine network Ĉf (r) using
the coarse network opacity results to sample from more rel-
evant portions of the scene volume (see Sec. 5.2 of [6].
For our experiments, the networks are trained using 1024
rays per batch sampled from the LLFF [5] multi-view im-
age datasets, scaled to a resolution of 504 × 378. 1 The

1This differs slightly from the training parameters used in [6], as they

network architecture we use is overall based on that of [6],
except that the input channels have been modified to accept
our feature vector in place of the parameters representing
the point to be sampled in the training scene. While they
use a positionally encoded representation of each dimen-
sion in the the 3D position p sampled along the view ray
(with L = 10, for a total of 60 parameters passed as input
to represent this position in the scene as in Eq. 1), we pass
the 64-dimensional feature vector sampled from the volume
as described above into the network with no positional en-
coding.

2. Ablation
We performed an ablation study to evaluate the efficacy

of the total variation loss and multi-resolution training tech-
niques described earlier. We use the trained model to opti-
mize the feature volumes for the ferns and trex scenes with
and without the aforementioned techniques. We provide the
per-scene results of these experiments both with and with-
out the Total Variation loss and multi-resolution training de-
scribed in Secs. 3.3.2 and 3.3.3, using the Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM),
and Learned Perceptual Image Patch Similarity (LPIPS) [9]
metrics. As Table 1 shows, these results show that over-
all our final approach outperforms these less sophisticated
alternatives per-scene in nearly all cases for each metric,
and on average for all metrics. We also performed a second
ablation to study how the generalization capabilities of our
method are affected by the number of scenes used at train-
ing time. In our original experiments we train on 6 scenes
(optimizing the rendering network parameters and the fea-

use 4096 rays per batch sampled from 1008 × 752 images and an addi-
tional 128 samples from the fine network for training. See Sec. 3 of this
document for comparisons to the results obtained when training both their
and our network using the parameters described above.

1



ture volumes simultaneously), and we only finetune on 2
scenes (optimizing only the feature volumes). The results
are shown in Table 2, and as expected the more scenes are
observed at training time the easier it is to generalize to un-
seen scenes.

PSNR↑
Fern T-Rex Avg.

Our method 25.752 26.510 26.131
w\o Multiscale 24.789 25.617 25.203
w\o Total Variation (TV) 25.039 25.504 25.271
w\o Multiscale, w\o TV 22.193 19.296 20.745

SSIM↑
Fern T-Rex Avg.

Our method 0.820 0.907 0.864
w\o Multiscale 0.793 0.878 0.835
w\o Total Variation (TV) 0.804 0.869 0.836
w\o Multiscale, w\o TV 0.704 0.691 0.698

LPIPS↓
Fern T-Rex Avg.

Our method 0.236 0.153 0.195
w\o Multiscale 0.279 0.209 0.244
w\o Total Variation (TV) 0.230 0.221 0.226
w\o Multiscale, w\o TV 0.324 0.366 0.345

Table 1: Per-scene quantitative ablation results.

3. Additional Evaluations
To demonstrate the generalization capacity of our net-

works, we provide additional results showing interactive
scene composition, editing and novel view synthesis on
multiple datasets from different domains. For these results,
we use the same network used for our previous experiments,
trained on the 6 LLFF scenes previously described. The fea-
ture volumes for each subject are then optimized using the
same approach as before.

We use images from the DeepVoxels [7] dataset, which
contains multiple calibrated images of static 3D objects
such as furniture. We use 479 images captured from the full
360◦ field around an object, at a resolution of 512×512. We
also use a multi-view dataset set of similarly rendered im-
ages of textured 3D models of scanned human subjects from
AXYZ Design [2] (25 primarly frontal images per subject,
at a resolution of 512×512). The feature volume optimiza-
tion takes approximately 6 hours per subject.

Num. Scenes PSNR↑ SSIM↑ LPIPS↓
1 24.1 0.79 0.29
3 25.13 0.83 0.26
6 26.13 0.86 0.19

Table 2: Quantitative results on generalization w/ vary-
ing number of training scenes.

Original Scenes

Resulting Composition (3 views)

Figure 1: Combining objects from various datasets. Note
that we use the rendering network trained on 6 scenes from
LLFF [5] and finetune a volume for each object separately.

Original Scenes

Resulting Composition (3 views)

Figure 2: Combining people from AXYZ [2] dataset.
Note that we use the rendering network trained on 6 scenes
from LLFF [5] and finetune a volume for each subject sep-
arately.

Fig. 1 portrays the combination of the feature volumes
for a vase and a stand with that of a human subject from
the AXYZ dataset. We also we combine feature volumes
for 4 human subjects (Fig. 2). Interestingly, despite the
large difference in the appearance of the subjects in these
datasets from the network training images, including a com-
plete lack of humans in the LLFF images, and the relatively
small number of scenes used for training the rendering net-
work, the results are quite reasonable. This suggests that the
initial network parameter training and feature volume op-
timization does indeed learn a disentangled representation
that allows for a flexible approach to rendering novel con-
tent beyond that which is similar to what it has seen during
training.
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Original Scenes

Resulting Composition (3 views)

Figure 3: Combining objects from various datasets.
Tight object fusion is achieved by choosing in each voxel
the feature set with maximum L2 norm among voxels of
original scenes.

We also noticed that the color and density information
carried by each voxel correlates with the L2 norm of its
feature vector. This allows us to fuse feature volumes by
choosing feature vector with maximum L2 norm among the
voxels with the same coordinates from original scenes. This
way, we can achieve tight contact between objects from dif-
ferent scenes without artifacts (Fig. 3).
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Figure 4: Rigid and non-rigid transformations of objects
extracted from a scene. The middle column shows the orig-
inal object/scene. Please zoom in and consult the supple-
mentary video for further demonstrations.

3.1. User Study

We also conducted a user study to evaluate the scene
manipulation capabilities of our method and Neural Point-
Based Graphics (NPBG) [1]. Given 6 scenes and 10 pairs

PSNR↑ SSIM↑ LPIPS↓
NeRF [6] 28.045 0.881 0.137
NeRF-multiscene 25.262 0.815 0.194
Ours 25.635 0.853 0.181

Table 3: Quantitative comparison with NeRF [6]. Met-
rics are averaged across test images for 8 scenes from from
LLFF [5] dataset. Our method is trained on multiple scenes
simultaneously while NeRF memorizes only one scene.

of edited images per scene (ours vs. NPBG), Amazon Me-
chanical Turk users were presented these pairs and asked to
decide which image was preferable. 5 workers were asked
per image pair, for a total of 300 questions asked (18 unique
users participated). In 62% of the cases, users preferred our
edited images.

3.2. Scene Content Deformation

Our method allows for rigid and non-rigid transforma-
tions of objects by resampling the volume. Fig. 4 shows var-
ious rigid and non-rigid manipulations of objects extracted
from these volumes and on entire scenes, obtained using the
aforementioned volume deformation and resampling tech-
niques. Please check the supplementary video for more
animated results. Keep in mind that related methods such
as NPBG [1] and NSVF [4] will struggle with this type of
deformations. For NPBG this might require changing the
density of the pointcloud which will affect the quality of
the rendered results; And for NSVF, which relies on sparse
voxels, it might require adding voxels to the empty regions,
which is more difficult than pruning. While we show exam-
ples such as stretching and scaling specific scene content,
the flexibility of our editing framework allows for arbitrary
manipulations that can be specified as local or global modi-
fications to a scene’s feature volume.

3.3. More Comparisons

Multi-scene NeRF. In Table 3 we show a comparison to
NeRF [6] on NVS. As NeRF is a scene-specific method,
while our rendering network generalizes across scenes, we
adapted it for a multi-scene scenario by associating each
scene with a one-hot encoding vector. NeRF is then condi-
tioned on this code in order to generate the specific scene.
We have increased the capacity of the network accordingly
to accommodate multiple scenes. While the original NeRF
performs better than our method, we outperform NeRF in
the multiscene scenario.

Single-scene NeRF. Below we provide further details
on the comparisons with the original implementation of
NeRF [6], using the training parameters described in Sec. 1
of this document on the LLFF dataset. For these compar-
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PSNR↑
Per-Scene, Training Per-Scene, Novel

Room Leaves Fortress Orchids Flower Horns Avg. Fern T-Rex Avg. Total Avg.
NeRF [6] 33.965 22.562 33.099 21.276 28.564 29.484 28.158 26.843 28.567 27.705 28.045
Ours 30.938 18.438 28.930 21.182 27.526 25.807 25.470 25.752 26.510 26.131 25.635

SSIM↑
Per-Scene, Training Per-Scene, Novel

Room Leaves Fortress Orchids Flower Horns Avg. Fern T-Rex Avg. Total Avg.
NeRF [6] 0.963 0.814 0.932 0.744 0.893 0.912 0.876 0.856 0.930 0.893 0.881
Ours 0.943 0.770 0.861 0.764 0.883 0.875 0.849 0.820 0.907 0.864 0.853

LPIPS↓
Per-Scene, Training Per-Scene, Novel

Room Leaves Fortress Orchids Flower Horns Avg. Fern T-Rex Avg. Total Avg.
NeRF [6] 0.093 0.186 0.068 0.204 0.110 0.133 0.132 0.168 0.137 0.152 0.137
Ours 0.131 0.227 0.207 0.178 0.123 0.190 0.176 0.236 0.153 0.195 0.181

Table 4: Per-scene quantitative results compared with the results of the original NeRF implementation. For NeRF, the
networks are trained per-scene until convergence. Ours, in contrast, uses a single rendering network trained for all scenes.

isons, we measure the difference between synthesized novel
views and ground-truth images withheld for each scene dur-
ing training, as in their evaluations. In our experiments, the
total amount of computation time required to optimize the
radiance function parameters for NeRF for a single scene
until convergence, which required approximately 48 hours,
or roughly 2 days. 2 Thus, training for all of the 8 scenes
in the results depicted in Tab. 4, a total of approximately
16 days of computation was required (though this was per-
formed in parallel on multiple systems) using an NVIDIA
V100 GPU for each scene. In contrast, training our sin-
gle rendering network on the set of 6 training scenes took
a total of roughly 36 hours. This network can then be ap-
plied to novel scenes using our feature volume optimiza-
tion process. For the novel scenes, an average of 5.5 hours
(also performed in parallel on multiple systems) was re-
quired to compute their feature volumes, meaning that for
these 8 scenes in total roughly 47 hours, or slightly less
than 2 days of total computation was required. We further
note that, while NeRF essentially memorizes a representa-
tion of the training scene that allows for a limited range of
novel view synthesis, our approach additionally allows for
the intuitive manipulation and combinination of data from
multiple scenes, as demonstrated in our experimental re-
sults. Thus, given that computational efficiency in training
a single network for multiple scenes networks is an advan-

2These numbers are slightly different than those reported in [6], but
as noted above, we use a different training image resolution and number
of samples in the fine network Ĉf (r) in our experiments. As pre-trained
models for each of these scenes were not available for their implementa-
tion, we trained the models for each scene using the above parameters for
a more direct comparison.

tage of our approach, we conduct additional evaluations in
which we examine how well NeRF performs with similar
computational resources. We trained the NeRF network for
each of the 8 scenes for 100K iterations, or approximately
5.5 hours, which is comparable to the time required to run
the novel scene feature volume optimization for a single
scene using our approach. After this point, in our exper-
iments the performance improved slowly until converging
after approximately 2 days to the aforementioned results.
The results are depicted in Tab. 5, with the results for Neu-
ral Point-Based Graphics (NPBG) [1] included for further
comparison. As seen in these tables, while NeRF does pro-
duce results that are slightly more visually appealing when
given unrestricted computational resources, when the train-
ing time is restricted the results are comparable, with ours
outperforming each alternative on average in 2 out of 3 met-
rics. We also note that these 2 metrics, SSIM and LPIPS, are
generally regarded to correspond better to realistic and more
higher quality images for the human visual system [3].

NPBG and NSVF. Additionally, in Table 6, we show
more detailed comparisons against Neural Point-Based
Graphics (NPBG) [1] and Neural Sparse Voxel Fields [4].
Please keep in mind that NSVF doesn’t perform well on
complex real scenes or on front-faced scenes where you
don’t see the object from all sides. This is mentioned by
the authors in the paper. In order to deal with complex
real scenes they rely on RGBD images as input. For this
comparison both our method and NSVF are trained only on
posed images without any depth information. NPBG re-
quires a point-cloud as input alongside the posed images.
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PSNR↑
Per-Scene, Training Per-Scene, Novel

Room Leaves Fortress Orchids Flower Horns Avg. Fern T-Rex Avg. Total Avg.
NPBG [1] 26.058 17.854 19.172 17.535 22.106 20.651 20.563 18.285 20.407 19.346 20.259
NeRF [6] 100K 32.492 21.952 31.957 21.172 27.478 27.922 27.162 26.370 27.209 26.790 27.069
Ours 30.938 18.438 28.930 21.182 27.526 25.807 25.470 25.752 26.510 26.131 25.635

SSIM↑
Per-Scene, Training Per-Scene, Novel

Room Leaves Fortress Orchids Flower Horns Avg. Fern T-Rex Avg. Total Avg.
NPBG [1] 0.890 0.668 0.804 0.572 0.769 0.794 0.750 0.706 0.774 0.740 0.747
NeRF [6] 100K 0.953 0.776 0.908 0.718 0.859 0.870 0.847 0.830 0.903 0.867 0.852
Ours 0.943 0.770 0.861 0.764 0.883 0.875 0.849 0.820 0.907 0.864 0.853

LPIPS↓
Per-Scene, Training Per-Scene, Novel

Room Leaves Fortress Orchids Flower Horns Avg. Fern T-Rex Avg. Total Avg.
NPBG [1] 0.163 0.272 0.200 0.301 0.204 0.222 0.227 0.267 0.231 0.249 0.232
NeRF [6] 100K 0.126 0.235 0.107 0.250 0.155 0.199 0.179 0.212 0.178 0.195 0.183
Ours 0.131 0.227 0.207 0.178 0.123 0.190 0.176 0.236 0.153 0.195 0.181

Table 5: Full per-scene quantitative results. We report the per-scene and average results on the initial training scenes as
well as on the novel scenes used in our generalization process, as well as the average across both datasets.

PSNR ↑
Fern Leaves Fortress Orchids Flower Trex Horns Average

NSVF 20.594 17.316 26.901 14.309 22.930 17.467 23.380 20.414
NPBG 18.285 17.854 19.172 17.535 22.106 20.407 20.651 19.430
Ours 25.752 18.438 28.930 21.182 27.526 26.510 25.807 24.878

Ours (single scene) 25.082 20.554 29.618 20.374 26.260 24.753 25.425 24.581

SSIM ↑
Fern Leaves Fortress Orchids Flower Trex Horns Average

NSVF 0.575 0.402 0.721 0.250 0.629 0.490 0.682 0.536
NPBG 0.706 0.668 0.804 0.572 0.769 0.774 0.794 0.727
Ours 0.820 0.770 0.861 0.764 0.883 0.907 0.875 0.840

Ours (single scene) 0.792 0.738 0.854 0.704 0.840 0.868 0.834 0.804
LPIPS ↓

Fern Leaves Fortress Orchids Flower Trex Horns Average
NSVF 0.448 0.519 0.346 0.571 0.385 0.445 0.431 0.449
NPBG 0.267 0.272 0.200 0.301 0.204 0.231 0.222 0.242
Ours 0.236 0.227 0.207 0.178 0.123 0.153 0.190 0.188

Ours (single scene) 0.272 0.261 0.198 0.245 0.173 0.195 0.238 0.226

Table 6: Quantitative comparison with NPBG [1] and NSVF [4]. Metrics are computed across test images for scenes
from from LLFF [5] dataset. “Ours” is our method trained on 6 scenes simultaneously as in our original setup. “Ours (single
scene)” is our method trained for one scene at a time.
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els: Learning persistent 3d feature embeddings. In Proc. Com-
puter Vision and Pattern Recognition (CVPR), IEEE, 2019. 2

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc., 2017.
1

[9] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep fea-
tures as a perceptual metric, 2018. 1

6


