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1. Introduction
In this supplementary material, we provide extra de-

tails on the proposed Grounding as Attention Priors (GAP)
method and analysis. They include:

• Implementation details of the Language and visual em-
bedding (Sec 3 main text)

• Mathematical proof on the meaning of the attention
refinement formulations (Sec 4.3 main text).

• Implementation of the Neural gating functions (Eqs. 12
and 13 main text).

• Experiment details including datasets and baselines.

• Additional experimental results.

• Additional qualitative analysis.

2. Language and Visual Embedding
Textual embedding Given a length-T question, we first
tokenize it into a sequence of words and further embed each
word into the vector space of 300 dimensions. We initialize
the word embeddings with the popular pre-trained vector
representations in GloVe [14].

To model the sequential nature of the query, we use
bidirectional LSTMs (BiLSTMs) taking as input the word
embedding vectors. The BiLSTMs result in hidden states
−→
hi and

←−
hi at a time step i for the forward pass and back-

ward pass, respectively. We further combine every pair
−→
hi

and
←−
hi into a single vector li =

[−→
hi ;
←−
hi

]
, where [; ] indi-

cates the vector concatenation operation. The contextual
words are then obtained by gathering these combined vec-
tors L =

{
li | li ∈ Rd

}T
i=1

. The global representation q of
the query is a combination of the ends of the LSTM passes
q =

[−→
h1;
←−
hS

]
.

For our grounding framework with contrastive learning,
we use a contextualized word representation extracted by
a pre-trained BERT language model [6] for each word wi

in an extracted RE. These contextualized embeddings are
found to be more effective for phrase grounding [7].

Visual embedding Visual regions are extracted by the
popular object detection Faster R-CNN [15] pre-trained on
Visual Genome [12]. We use public code1 making use of the
Facebook Detectron2 v2.0.1 framework2 for this purpose.
For each image, we extract a set of N RoI pooling features
with bounding boxes {(aj , bj)}Nj=1, where aj ∈ R2048, bj ∈
R4 are appearance features of object regions and bounding
box’s coordinators, respectively. We follow [18] to encode
the bounding box’s coordinators into a spatial vector of 7
dimensions. We further combine the appearance features
with the encoded spatial features by using a sub-network of
two linear transformations to obtain a set of visual objects

V =
{
vj | vj ∈ Rd′

}N
j=1

, where d′ is the vector length of

the joint features of the appearance features and the spatial
features. For ease of reading and implementation, we choose
the linguistic feature size d and the visual feature size d′ to
be the same.

3. Meaning of Attention Refinement Mecha-
nisms

In this section, we will give a proof that our choices for
attention refinement in Eqs. (10, 11 and 14) in the main
paper are the optimal solutions with respect to some criteria
for probability estimate aggregation.

Let us consider the generic problem where a system has
multiple estimates {Pi (x)}ni=1 of a true discrete distribution
P (x) from multiple mechanisms with corresponding de-
grees of certainty λ = {λi}ni=1. We first normalize these cer-
tainty measures so that they sum to one: λi ≥ 0,

∑
i λi = 1.

We aim at finding a common distribution P ′ (x) aggregat-
ing the set of distributions {Pi (x)} subject to a item-to-set
distance D:

1https://github.com/MILVLG/bottom-up-attention.pytorch
2https://github.com/facebookresearch/detectron2
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P ′ (x) = argmin
P (x)

Dλ (P (x) ; {Pi (x)}ni=1) . (1)

This problem can be solved for particular choices of the set-
distance function D that measures the discrepancy between
P (x) and the set {Pi (x)}ni=1 under the confidence weights
λ = {λi}ni=1. We consider several heuristic choices of the
function D:

Additive form:
If we define the distance to be Euclidean distance from

P (x) to each member distribution Pi (x) of the set, then the
minimized term D becomes

Dλ (P (x) ; {Pi (x)}ni=1) =
1

2

∑
i

λi
∑
x

(P (x)−Pi (x))2 .

(2)
Here, we minimize Dλ w.r.t. P (x):

∂PD =
∑
i

λi (P (x)− Pi (x)) .

By setting this gradient to zero, we have P ′ (x) =∑
i λiPi (x). This explains for the additive form of our

attention refinement mechanism in Eqs. (10 and 14 (upper
part)) in the main paper where we seek a solution that best
agrees with the grounding prior and the model-induced
probability .

Multiplicative form:
If we defineD as the weighted sum of the KL divergences

between P (x) to each member distribution Pi (x) of the set:

Dλ (P (x) ; {Pi (x)}ni=1) =
∑
i

λiKL (P (x) ‖ Pi (x))

(3)

=
∑
i

λi
∑
x

P (x) log
P (x)

Pi (x)
.

(4)

Here, we minimize a Lagrangian with the multiplier η of Dλ

w.r.t. P (x), L = D + η (
∑
x P (x)− 1) :

∂PL =
∑
i

λi

(
log

P (x)

Pi (x)
+ 1

)
+ η (5)

= logP (x)−
∑
i

λilogPi (x) + 1 + η (6)

= logP (x)− log
∏
i

Pi (x)
λi + 1 + η. (7)

Setting this gradient to zero leads to:

P ′ (x) = C
∏
i

Pi (x)
λi , (8)

where C is a calculable constant to normalize P ′(x) such
that its components sum to one. This explains for the multi-
plicative form of our attention refinement mechanism in Eqs.
(11 and 14 (lower part)) in the main paper.

4. Neural Gating Functions
Here we provide the details of implementation choices

for the neural gating functions in Eqs. (12 and 13). In
particular, we use element-wise product between embedded
representations of the input v ∈ Rd and q ∈ Rd as following:

λ = hθ (v, q) (9)

= σ
(
w>λ

(
ELU

((
W>v v + bv

)
�
(
W>q q + bq

))))
,

(10)

where wλ ∈ Rd, Wv ∈ Rd×d, Wq ∈ Rd×d are learnable
weights, bv, bq are biases, σ is the sigmoid function and �
denotes the Hadamard product. ELU [5] is a non-linear
activation function.

For multi-step reasoning, we additionally takes as input
the intermediate controlling signal ck ∈ Rd at reasoning step
k. Output of the modulating gate in Eq. 13 in the main paper
is given by

λk = pθ (ck, hθ (v, q)) , (11)

where

hθ (v, q) =W>h
(
ELU

((
W>v v + bv

)
�
(
W>q q + bq

)))
,

(12)

pθ = σ
(
w>λ (ELU (ck � hθ (v, q)))

)
. (13)

Here Wh ∈ Rd×d, Wv ∈ Rd×d, Wq ∈ Rd×d, wλ ∈ Rd are
learnable weights, and bv, bq are biases.

5. Experiment details
5.1. Datasets

VQA v2 is a large scale VQA dataset entirely based on
human annotation and is the most popular benchmark for
VQA models. It contains 1.1M questions with more than
11M answers annotated from over 200K MSCOCO images
[13], of which 443,757 questions, 214,354 questions and
447,793 questions in train, val and test split, respectively.

We choose correct answers in the training split appear-
ing more than 8 times, similar to prior works [17, 2]. We
report performance as accuracy calculated by standard VQA
accuracy metric: min( #humans that provided that answer

3 , 1) [3].

GQA is currently the largest VQA dataset. The dataset
contains over 22M question-answer pairs and over 113K
images covering various reasoning skills and requiring multi-
step inference, hence significantly reducing biases as in pre-
vious VQA datasets. Each question is generated based on an



Model
VQA-CP2 test VQA v2 val

Overall Yes/No Number Other Overall Yes/No Number Other

UpDn baseline 40.6 41.2 13.0 48.1 63.3 79.7 42.8 56.4
UpDn+GAP 40.8 41.2 13.2 48.3 64.3 81.2 44.1 56.9
UpDn+RUBi 48.6 72.1 12.6 46.1 62.7 79.2 42.8 55.5

UpDn+RUBi+GAP 48.9 72.2 12.8 46.4 64.2 81.4 44.3 56.3

Table 1. Performance on VQA v2 val split and VQA-CP2 test split with UpDn baseline.

associated scene graph and pre-defined structural patterns.
GQA has served as a standard benchmark for most advanced
compositional visual reasoning models [9, 8, 10, 16]. We
use the balanced splits of the dataset in our experiments.

5.2. Baseline Models

Bottom-Up Top-Down Attention (UpDn) UpDn is the
first to introduce the use of bottom-up attention mechanism
to VQA by utilizing image region features extracted by
Faster R-CNN [15] pre-trained on Visual Genome dataset
[12]. A top-down attention network driven by the question
representation is used to summarize the image region fea-
tures to retrieve relevant information that can be decoded
into an answer. The UpDn model won the VQA Challenge
in 2017 and became a standard baseline VQA model since
then.

MACNet MACNet is a multi-step co-attention based
model to perform sequential reasoning where they use VQA
as a testbed. Given a set of contextual word embeddings
and a set of visual region features, at each time step, an
MAC cell learns the interactions between the two sets with
the consideration of their past interaction at previous time
steps through a memory. In particular, an MAC cell uses a
controller to first compute a controlling signal by summariz-
ing the contextual embeddings of the query words using an
attention mechanism. The controlling signal is then coupled
with the memory state of the previous reasoning step to drive
the computation of the intermediate visual attention scores.
At the end of a reasoning step, the retrieved visual feature is
finally used to update the memory state of the reasoning pro-
cess. The process is repeated over multiple steps, resembling
the way humans reason over a compositional query. In our
experiments, we use a Pytorch equivalent implementation3

of MACNet instead of using the original Tensorflow-based
implementation. We choose the number of reasoning steps
to be 6 in all experiments. For experiments with GAP, we
only refine the attention weights inside the controller (lin-
guistic attention) and the read module (visual attention) at
the first reasoning step where the grounding prior shows its
best effect in accelerating the learning of attention weights,
hence leads to the best performance overall.

3https://github.com/tohinz/pytorch-mac-network

Bilinear Attention Networks (BAN) BAN is one of the
most advanced VQA models based on low-rank bilinear
pooling. Given two input channels (language and vision
in the VQA setting), BAN uses low-rank bilinear pooling
to extract the pair-wise cross interactions between the ele-
ments of the inputs. It then produces an attention map to
selectively attend to the pairs that are most relevant to the
answer. BAN also takes advantage of a multimodal residual
networks to improve its performance by repeatedly refining
the retrieved information over multiple attention maps. We
use its official implementation4 in our experiments. In or-
der to make the best judgments of the model’s performance
with our attention refinement with grounding priors, we re-
move the plug-and-play counting module [19] in the original
implementation.

Regarding the choice of hyper-parameters, all the ex-
periments regardless of the baselines are with d=512. The
number of visual objects N for each image is 100 and the
maximum number of words T in a query is set to be the
length of the longest query in the respective dataset. We
train all the models using Adam optimizer with a batch size
of 64. The learning rate is initialized at 10−4 and scheduled
with the warm up strategy, similar to prior words in VQA
[11]. Reported results are at the epoch that gives the best
accuracy on the validation sets after 25 training epochs.

6. Additional Experimental Results
Apart from the experimental results in Sec. 5 in the

main paper, we provide additional results on VQA-CP2
dataset [1] to support our claim that GAP complements re-
lated works with regularization schemes. We choose RUBi
[4] as a representative bias reduction method for VQA with
a general linguistic debiasing technique and yet effective
on VQA-CP2 dataset. Table 1 presents our experimental
results with UpDn baseline. As clearly seen, even though
linguistic biases are not the main target, GAP still shows
consistent improvements on top of both UpDn baseline and
UpDn+RUBi baseline. It is to emphasize that applying the
regularization by RUBi for linguistic bias considerably hurts
the performance on VQA v2 even though RUBi largely im-
proves performance on VQA-CP2 test split. GAP brings the
benefits of pre-computed attention priors and rejects the dam-

4https://github.com/jnhwkim/ban-vqa



age caused by the regularization effects by RUBi to maintain
its excellent performance on VQA v2 while slightly im-
proving the baseline’s performance on VQA-CP2. Looking
more closely at the results per question type on VQA-CP2
(Row 1 vs. Row 2, and Row 3 vs. Row 4), GAP shows
its universal effect on all question types with the strongest
effect on “Other” question type which contains open-ended
arbitrary questions. On the other hand, RUBi (Row 3 vs.
Row 1) shows its significant impact only on binary questions
“Yes/No” but considerably hurts “Number” and especially
“Other” question types. This reveals that the regularization
scheme in RUBi is overfitted to “Yes/No” questions specif-
ically due to the limitation of the data generation process
behind this dataset.

The analysis in this Section is consistent with our results
in Figure 4 in the main paper and is clearly evident to GAP’s
universal effects in improving VQA performance. The ad-
ditional results with RUBi shown in this Section also state
GAP’s complementary benefits upon the use of the learning
regularization methods targeting only a specific type of data
as such in VQA-CP2.

7. Additional Qualitative Analysis
Fig.6 in the main paper provides one case of visualization

on the internal operation of our proposed method GAP as
well as its effect on VQA models. We provide more exam-
ples here for UpDn baseline (Fig. 1) and MACNet baseline
(Fig. 2) with the same convention and legends.

In each figure, left subfigures present the linguistic-visual
alignments learned by our unsupervised grounding frame-
work. Right subfigures compare the visual attentions before
and after applying GAP. In all cases across two different
baselines (UpDn and MACNet), GAP clearly helps direct
the models to pay attention to more appropriate visual re-
gions, partly explaining their answer predictions.
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(a)

2nd RE-image pair

1st RE-image pair 3rd RE-image pair

Original picture

Before GAP After GAP

Question:
On which side is the large device,
the left or the right?

GT answer: “right”  

Prediction: “left” Prediction: “right”
(b)

Figure 1. Qualitative analysis of GAP with UpDn baseline. (a) Region-word alignments of different RE-image pairs learned by our
unsupervised grounding framework. (b) Visual attentions and prediction of UpDn model before (left) vs. after applying GAP (right). GAP
shifts the model’s highest visual attention (green rectangle) to more appropriate regions while the original puts attention on irrelevant parts.

(a)

2nd RE-image pair

1st RE-image pair 3rd RE-image pair
Original picture

Before GAP After GAP

Question:
Which color does the traffic cone to 
the right of the boy have?

GT answer: “green”  

Prediction: “orange” Prediction: “green”
(b)

Figure 2. Qualitative analysis of GAP with MACNet baseline. (a) Region-word alignments of different RE-image pairs learned by our
unsupervised grounding framework. (b) Visual attentions and prediction of MACNet model before (left) vs. after applying GAP (right).
Visualized attention weights are obtained at the last reasoning step of MACNet.


