
Supplementary for Dense but Efficient VideoQA for Intricate Compositional
Reasoning

This material complements our paper with additional ex-
perimental results and their analysis. First of all, we verify
the solidity of our model, DSR, with the additional quanti-
tative experimental results in Section 1. Section 2 shows the
superiority of DSR in terms of memory efficiency. This is
followed by a visual analysis of two modules we proposed,
the deformable sampling module and the dependency atten-
tion module, in Section 3. Afterward, Section 4 provides
some qualitative examples that our model predicts correct
answers. Lastly, Section 5 describes the implementation de-
tails, such as the settings for training. The code will be made
publicly available.

1. Additional Quantitative Results
Table 1 shows the superior performance of our model,

DSR, according to the compositional reasoning step of
given questions. The compositional reasoning step of a
question refers to how many steps the question must be in-
ferred in order to find the correct answer. In other words, the
more reasoning step the question has, the more difficult it is.
As shown in Table 1, our model consistently performs well
compared to the strong baseline, ClipBERT, regardless of
the compositional steps. Although our model is designed to
target complex questions, it also works effectively for ques-
tions with low compositional steps. In particular, there is a
large difference in performance for questions with five com-
positional steps, which require a lot of spatio-temporal rea-
soning.

In addition, we validate that the performance gain of
DSR comes from novel modules we proposed, but not from
the increased parameters, by ablation for each module con-
sidering fair parameter sizes. Based on the ClipBERT ar-
chitecture that records the best score in Table 4 in the main
paper (a), we add 2 transformer layers in place of the de-
pendency attention, for the text embedding (b). In addition
to (b), we add 4 transformer layers instead of the condi-
tional sampler, for the visual embedding (c). Remarkably,
(b; 52.62) and (c; 52.56) even record lower scores than (a;
53.24). Simply adding extra parameters does not increase
the QA accuracy. Also, we postulated that adding question
embedding to learnable queries is crucial for deformable
sampler. Without conditioning on questions, sampled visual

DSR(Ours) ClipBERT [3]

Step 1
Binary 75.24 74.08
Open 9.23 8.46
All 74.98 73.82

Step 2
Binary 75.99 75.50
Open 46.92 46.48
All 55.87 55.42

Step 3
Binary 79.64 79.61
Open 71.24 70.55
All 74.70 73.87

Step 4
Binary 82.8 83.82
Open 49.84 48.86
All 54.01 53.29

Step 5
Binary 58.34 48.23
Open 57.78 33.41
All 50.26 38.30

Table 1. Quantitative comparison with ClipBERT on the reasoning
step based subset of AGQA dataset.

tokens will always become identical no matter which ques-
tions are given, which would be suboptimal for complex
QA tasks. We got an accuracy of 52.39 without the question
conditioning, which is lower than our model. Namely, all
the modules we proposed add value.

2. Memory Efficiency of DSR
For the spatio-temporally complex QA task, it is im-

portant for a model to cover as many frames as possible
efficiently. Here, we compare how many frames can be
addressed by each method until the OOM error is raised
under the one NVIDIA V100 GPU environment that has
32GB GPU memory. For this experiment, we set the batch
size as 1 using the same visual backbone and cross-modal
transformer architecture for all methods. For the ClipBERT,
each clip consists of 2 consecutive frames, i.e., 64 clips are
needed to address 128 frame length, which is the default
and the best configuration in their paper [3].

From Table 2, we observe that our DSR shows the
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# of frames Max
Frames2 4 8 16 32 64 128 256

Baseline 7.41 7.61 8.30 10.52 16.08 OOM OOM OOM 60
ClipBERT [3] 7.39 7.91 8.86 10.14 12.71 17.84 28.15 OOM 162
DSR(Ours) 6.69 6.81 7.21 8.31 9.68 13.64 23.65 32.46 269

Table 2. Comparison of memory consumption in GB. Max Frame in the last column means the maximum number of frames right before
the OOM error.

best memory efficiency among all comparatives. For the
Baseline model, all visual features are fed to the cross-
modal transformer without any pooling or sparsification. As
a result, the memory requirement of the model increases
quadratically according to the length of the full visual fea-
ture sequence: O((THW + Lt)

2) where Lt is the length
of question words. In contrast, ClipBERT and DSR can
address long sequences more efficiently than the baseline
model. In ClipBERT, the feature map is pooled temporally
so that only spatial sequence length (H ×W ) is considered
in the cross-modal transformer. However, ClipBERT is less
efficient than our DSR. Since the ClipBERT passes multi-
ple short clips independently, the memory requirement of
the cross-modal transformer becomes O(Nc(HW + Lt)

2)
where Nc denotes the number of clips. In DSR, the mem-
ory consumption is only proportional to Nq + T : O((Nq +
T + Lt)

2) where Nq and T indicate the number of learn-
able queries and the length of global context features, re-
spectively.

3. Visual Analysis on Usefulness of Each Mod-
ule

As introduced in Section 3 of the main paper, we pro-
posed two novel modules for spatio-temporal reasoning. To
provide the qualitative verification on the effectiveness of
each module, this section consists of two parts, 1) quali-
tative examples of sampled visual features in line with the
given question, and 2) visualization of dependency attention
weights.

3.1. Justification of conditionally sampled visual
features

This section justifies the validity of our deformable sam-
pling module, which samples essential visual features con-
ditioned to given questions. Instead of densely sampling
redundant visual features, the module samples a few di-
verse samples, which are especially helpful for answering
the given questions. For brevity, Figure 1 and 2 only repre-
sents the sampling points on the temporal axis. In Figure 1,
we observe that our DSR samples different sets of frames
based on each question, which indicates that DSR can sam-
ple frames in a question conditional way. Specifically, the
model focuses on most of the temporal steps to answer a

question in the bottom example of Figure 1, while the top
example shows that the model sparsely attends to the spe-
cific temporal blocks.

Figure 2 depicts the corresponding video frames along
with the sample question. To answer the given question, a
model should understand the following actions in chrono-
logical order; 1) reading a book, 2) taking a blanket, and 3)
snuggling under the blanket. Notably, sampled frames con-
tain all related actions while excluding most of the unnec-
essary actions.

3.2. Efficacy of dependency attention head

Figure 3 visualizes the first head of the last layer of the
dependency encoder we proposed, on the test dataset. The
outputs of the dependency encoder turn into the text in-
puts of the cross-modal transformer for our model, while
the baseline models only utilizes pre-trained Bert embed-
dings [1] as the input. Compared to the Bert embeddings
that contain general relationships among text tokens, depen-
dency encoder benefits from simplifying long questions by
further embedding hierarchical information.

4. Qualitative Examples of Successful Predic-
tion

In Figure 4, we illustrate the examples of AGQA dataset
that our model successfully predicts the answer. As shown
in the examples, AGQA dataset consists of problems of
solving complex questions for long video sequences con-
taining various actions. For example, in the case of the third
row in Figure 4, the problem can be solved only by recog-
nizing the action of wiping glass and walking while under-
standing the order of the two actions. Therefore, our dense
but effective model is needed to understand the comprehen-
sive semantic structures of the video.

5. Implementation Details

This section provides the detailed architecture of our
method, including the overall framework and two main
modules we introduced. Afterward, we provide the training
details, such as hyper-parameters for each objective func-
tion, over the dataset we utilized.



Figure 1. Different sampling points according to different questions in the same video.

Figure 2. Video frames corresponding to the deformable sampling points.

5.1. Model architecture

Transformer based VideoQA model We use the same
architecture with ClipBERT [3] for the transformer-based
VideoQA model. The number of layers and attention heads
of each layer is set to 12. The hidden and intermediate
dimensions are 768 and 3072, respectively. Also, we use
GELU [2] action function for the transformer layers. For a
classification head, we use 2-fully-connected layers.

Conditional Deformable Attention module For the
Conditional Deformable Attention (CDA) module, we use a
4-layer transformer based on the deformable decoder [6]. In
each layer, we sample 8 offset points with 4 different atten-
tion heads. The hidden dimension of each transformer layer
is 768 and we use ReLU [5] as an activation function.

Dependency attention module The 2-layer transformer
with 12-multi-head is used as a backbone of the depen-
dency attention module. The dependency-constrained atten-

tion module is implemented on the first head of the first
layer. For the dependency head, attention probabilities are
calculated based on dependency parsing relations and learn-
able value embeddings are multiplied by corresponding at-
tention probabilities.

5.2. Hyperparameters and training details

Default Hyperparameters and Optimization For all ex-
periments by default, we set the learning rate and weight
decay for all modules except for the CDA to 5e-5 and 1e-
3, respectively. Also, we use AdamW [4] optimizer and use
learning rate warmup over the first 10% training steps fol-
lowed by linear decay to 0. Following the optimization strat-
egy for [6], the base learning rate of CDA module is 0.0001
and the learning rate is decayed at half of the training steps
by a factor of 0.1. Also, learning rates of the linear projec-
tions, used for predicting object query reference points and
sampling offsets, are multiplied by a factor of 0.1. For the
video inputs, we resize frames to 448 pixels for the long spa-
tial side and add zero padding to the remaining regions for



Figure 3. Visualization of self-attention of question tokens that have passed through the dependency attention module.

the short side. Also, we set the maximum question length to
100 for all experiments except for TGIF-QA. For the TGIF-
QA the maximum question length is 25.

Training details For our main AGQA experimental re-
sults, we train our DSR for 5 epochs with a learning rate
of 2e-4. We use a total of 32 NVIDIA V100 GPUs with a
batch size of 8 per GPU. For ablations, we use 4 GPUs with
a learning rate of 5e-5. For MSRVTT-QA and TVQA, we
train our model for ten epochs and five epochs, respectively,
and the remaining training details are the same as the main
AGQA experiment. For TGIF-QA, we train ClipBERT and
DSR for 60 epochs with a dropout probability of 0.4 for
the final classification head. Other hyperparameters such as
learning rate and weight decay are the same as the default
setting described above.



Figure 4. Examples of intricate VideoQA problems of AGQA that our model predicts correct answer.
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