A. Proofs

Lemma 2. Leri € {2,--- ,d+ 1} andn < X < 1. Then,
the expectation of the adversarial feature vector against the
auxiliary task is
E[&"] =y, E[ZY]=0-Ny ®)
Proof. Our model comprises a non-linear feature embedding
function g : X — Z and a linear classifier f,, : £ — ).
In addition, the theoretical model is based on two princi-
ples that reflect the behaviors of neural networks against
adversarial examples: (i) the signs of the non-robust fea-
tures Z; : ¢ € {2,---,d + 1} are switched by an adversary
with high probability; (ii) the sign of the robust feature z;
is not easily switched by an adversary. The objective of
an adversary is to find an adversarial perturbation §* =
arg maxgeg £(g(& + ), §; yw). Because f.q, is linear, we
can easily determine the optimal adversarial direction in the
feature space Z using V,£(g(Z +8), J; yw). Since the scale
of the adversarial perturbation in the feature space is a prob-
lem of maximizing the convex function £(g(Z + 8), §; yw),
as the scale of the perturbations increases, the situation is
better from the adversarial point of view. However, these
principles limit the scale range. By (i), A; > n = |E [Zi]],
where i € {2,---,d+ 1}; by (ii), A1 < 1 = |E [Z1]]. There-
fore, without loss of generality, the adversarial feature vector
2" can be approx1mated by 2 + A - sign(Vz{(Z, §; yw))
(wesetn < A=A = = Ag41 < 1 for simplicity).
The loss function of the auxiliary task is formulated as

02, §;yw) (13)
= —tho(yw'2) - (1 -HIn(1 - o(yw'2)),
where ¢ = %(gj + 1). Therefore,
E [Eadv] =T [Z; + \-sign 6_~
! %
=y+E [)\ - sign (’ywl(a(’yw—ri) — f))] =y, (14)
ol
~adv
E [zZ ] E |Z; + X -sign <621>]
=ny+E [)\ . sign(’ywi(a('y'w Z) — t))] .
We have
sign(yw;(o(yw ' 2) — 1)) as)
= sign(w;) - sign(yo (yw " 2) —~f) = —y.
Hence,
E [2"] = ny — Ay, (16)
wherei € {2,--- ,d+1}andt = 1(y+1). O

Theorem 1. Let {(;w) and {(; yw) be the loss functions
of the primary and auxiliary tasks, respectively, and t =
%(y + 1). When the auxiliary data are closely related to the
primary data from the perspective of robust and non-robust
features, i.e., = 1, the expectation of the gradient of ¢

with respect to 2% 1 i € {2,-++ ,d+ 1} is
65 _ ~adv 1 —
E[azadv} _EE{ (! 2%) =t = =
ol )
adv
:E]E[(’UJZ )t]_E[az_?dV]

Proof. The expectation of the gradient of { with respect to
N2, d+1}is

ol
E [8~adv
Based on Equation 15, we obtain
g v
E[2 (0w z) - 1)

= %IE{ (yw zad")

=E [%(J(fwazadv) — f)} . (18)

1 _
— Ayt — T”} (19)

1 aav
:EIE[U(szd)—t].
O

Theorem 2. Let { (; yw) be the loss function of the auxiliary
task. Then, if |y| = 1, with high probability, the signs of

24 24 € {2,--+,d + 1} and the auxiliary loss gradient
wzth respect to z“dv are
ol
sign (9) = —yq = sign (agad\'> . (11)

Proof. The gradient of ? with respectto z; : i € {2,--- ,d+
1} is

ol
0%;
Therefore, the adversarial feature Zadv can be calculated as
7V = Z; — \yq. Because E [Z;] = ny and ) < A, the sign
of Zadvjg equal to —vq with high probability. In addition, the

sadv ;

= g(a('yw—ri) —r), wherer = %(q +1). (20

gradient of  with respect to z2% is given as
ol
o = ol 2 ). @1
1

Considering the adversarial vulnerability of our classification
model, we can rewrite o (yw ' ') as 1(1 — ¢q), where
¢ € (0,1). Then,

o _y(l ¢ g 1\_-w
aNHdv_d<2 2 2 2)_2d (140 @2



Hence, the sign of %;Zv is equal to —vq with high probability.

|

Theorem 3. Let /i (;yw) be the loss function of the auxiliary
task. Then, if |y| = 1 and wy > 0, with high probability, the
signs of 2% and the auxiliary loss gradient with respect to

z“dv are

sign(229Y) =4, sign (?—i) = —vq. (12)
oz

Proof. The gradient of { with respect to Zj is

3_~€ = yw(o(yw' 2) —r), wherer = l(q +1). (23)
821 2

Assuming that the classification model is still vulnerable to
adversarial examples, the adversarial feature 734" is given as
24V =z, — A\vyq. Because E [7;] = y and \ < 1, the sign

of Zav ig equal to y with high probability. In addition, the

gradient of { with respect to 23V is

ol
S = Ywi(o(yw’ 2Y) — 7). (24)
1

Considering the adversarial vulnerability of our classification
model, o(yw " 2°%) can be rewritten as £(1 — (q), where
¢ €(0,1). Then,

ol B 1 ¢q¢ ¢q 1
W =YW \5 -5 — 5 5

—yqui
- a+0.

f&f

Hence, the sign o F is equal to —vyq with high probability.

|

If we use E [q] = 0 instead of sampled random labels ¢
for non-robust feature regularization, the gradient of £ with

respectto Z; : ¢ € {2,--- ,d+ 1} 1is
3(777 .. 1

Based on the high standard accuracy of our classification
model, with high probability, the gradient of £ with respect
to Z; :i € {2,---,d + 1} can be rewritten as

6277 T+, 1
5% =1 (v 5)

_2 (1 Sy _
_E<§(1+C7y) 2)_2d’

sadv

27

Therefore, the adversarial feature zi“Y can be calculated as
74V = Z + \y. Because E [3;] = ny and < ), the sign

of Z3 ig equal to y with high probability. In addition, the

gradient of  with respect to 224" is given as
o v T zad 1

Because 2 = %, + Ay, o(yw ' 2"

by 3(1 4 ~y). Then,

) can be approximated

ol Yy
55 = 2 (29)

sadv

Hence, with high probability, the signs of zi®V and the auxil-

iary loss gradient with respect to 724" are

sign(#9) — y — sign <8f—d€> . (30)

A.1. When 7| < 1

When |y| < 1 (weak correlation), our theorems can be
replaced as follows:

Theorem 4. Let ((;w) and [(; yw) be the loss functions
of the primary and auxiliary tasks, respectively, and v =
sign(y). Then, the sign of the expectation of the gradient of
{ with respect to 2% i € {2,--+ ,d+ 1} is

Theorem 5. Let /i (; yw) be the loss function of the auxiliary
task and 4 = sign(y). Then, with high probability, the signs
of 2% i € {2,--- ,d+ 1} and the auxiliary loss gradient

with respect to 224 are

ol
51gn( adv) = q = s1gn (agadV> . (32)

Theorem 6. Let { (; yw) be the loss function of the auxiliary
task and 4 = sign(vy). Then, if |v| = 1 and w1 > 0, with
high probability, the signs of 7% and the auxiliary loss

gradient with respect to 7% are

. oL N
sign(29Y) = ¢, sign (W) = —4q. (33)
1



The theorems in the cases of || < 1 show that the scale
of the correlation coefficient does not change our main idea.
Moreover, the training signals generated from the auxiliary
task are weakened as || approaches O (shown in Equa-
tion 31). Note that we consider only a common robust and
non-robust feature space between the primary and auxiliary
data in our theoretical model. Therefore, negative transfer,
induced by learning exclusive features of auxiliary tasks,
cannot be described in our model.

B. The effects of the use of more auxiliary
datasets

We investigate the effects of the use of more auxiliary
datasets under the proposed method and provide the experi-
mental results in Table 4. The results demonstrate that the
use of more auxiliary datasets does not always lead to fur-
ther improvements in adversarial robustness. The results on
CIFAR-10 indicate that the use of both SVHN and CIFAR-
100 results in a lower degree of robustness than that achieved
by using CIFAR-100 alone. Likewise, leveraging a combi-
nation of ImageNet and Places365 leads to more vulnerable
models than that utilizing only ImageNet. In other words,
the relationship between the primary and auxiliary datasets
is more important to the proposed method than the number
of auxiliary datasets.

In fact, this result is a general phenomenon that can be
easily observed even in non-adversarial setting. To show this,
we conducted an additional test in which: (1) the CIFAR-10
training set was classified into datasets that contain 25000,
12500, and 12500 samples, namely cifar-A, cifar-B, and
cifar-C, respectively. We added uniform noise to the cifar-C
dataset to sparsify the information included in the cifar-C
dataset; (2) a classifier (ResNet18) was then trained on cifar-
A using cifar-B and cifar-C as extra datasets with a batch
size of 128 and evaluated on the test set. The results in Ta-
ble 5 indicate that although cifar-B and cifar-C each result in
performance improvement as an additional data set, the use
of both cifar-B and cifar-C results in a test accuracy lower
than that achieved by using cifar-B alone. We hypothesize
that that this is because the density of information in the
training dataset is more important than the total amount of
information included in the training dataset in terms of the
minibatch gradient descent. In other words, when DNNs are
trained with a small batch size, the quality of each minibatch
gradient is more important than the total amount of informa-
tion in the dataset. To confirm this, we additionally run the
abovementioned experiments with larger batch sizes; in fact,
Table 5 reveal that the use of both cifar-B and cifar-C results
in a higher test accuracy than that achieved by using cifar-B
alone in large batch settings.

C. Robust dataset analysis

Ilyas et al. [21] generated a robust dataset containing only
robust features (relevant to an adversarially trained model)
to demonstrate their existence in images. In particular, they
optimized:

n;iTn lg(zr) — g(@)]l,

, where x is the target image and ¢ is the feature embedding
function. They initialized z, as a different randomly chosen
image from the training set. Thus, the robust dataset consists
of optimized x,—target label y pairs.

To confirm robust feature learning through the applica-
tion of the proposed method, we construct robust datasets
from the AT and AT+BiaMAT models. We then normally
train models from scratch on each robust dataset using the
cross-entropy loss and list the results in Table 6. As shown,
the robust dataset developed using the model trained with the
proposed method results in more accurate and robust mod-
els than those trained on the robust dataset of the baseline
model. The proposed method thus enables neural networks
to learn better robust features via inductive transfer between
adversarial training on the primary and auxiliary datasets.

D. Comparison with other related methods

Semi-supervised learning. Carmon et al. [4] and Stan-
forth et al. [38] proposed a semi-supervised learning tech-
nique by augmenting the training dataset with unlabeled in-
distribution data. The main difference between them and Bia-
MAT is the distribution of additional data leveraged. For in-
stance, Carmon et al. [4] collected in-distribution data of the
CIFAR-10 dataset from 80 Million Tinyimages dataset [39]
and used the unlabeled data with pseudo labels. Carmon et
al. [38] categorized CIFAR-10 into labeled and unlabeled
data. Their theoretical analysis also assumed that the unla-
beled data were in-distribution, and when out-of-distribution
data were used instead, a large performance drop can be
observed. Therefore, while no assumptions are required for
the classes of the primary and auxiliary datasets in our sce-
nario, the semi-supervised methods are ineffective when the
primary and auxiliary datasets do not share the same class
distribution. To demonstrate this, we assign pseudo labels to
the auxiliary data using a classifier trained on cach primary
dataset and configure each training batch to contain the same
amount of primary data and pseudo-labeled data as in [4]. In
particular, we sort the ImageNet data based on the confidence
in the primary dataset classes and select the top (N x 10)k
(or top (N x 1)k) samples for each class in CIFAR-10 (or
CIFAR-100); this is denoted by ImageNet-(N x 100)k. In
Table 7, the Carmon et al. [4] method exhibits lower com-
patibility than the proposed method. In particular, the results
obtained using CIFAR-100 and Places365 demonstrate that
the semi-supervised method is vulnerable to negative trans-



Table 4. Performance improvements (accuracy %) on CIFAR-10 following application of the proposed method using various datasets. The

best result is indicated in bold.

Method Auxiliary dataset Clean PGD!00 Ccwioo AA
AT - 87.37 50.87 50.93 48.53
SVHN 87.34 51.90 51.40 48.61
CIFAR-100 87.22 55.93 52.09 50.08
. SVHN, CIFAR-100 87.61 54.58 52.03 49.88
AT+BiaMAT Places365 87.76 57.00 51.70 49.48
ImageNet 88.75 57.63 53.04 50.78
Places365,ImageNet 87.88 56.22 51.86 49.58

Table 5. Comparison (accuracy %) of the effectiveness of data augmentation (cifar-B and cifar-C) on cifar-A.

Batch size Dataset Test error (mean=+std over 5 runs)

cifar-A 9.58+0.21

128 cifar-A + cifar-B 7.32+0.14
cifar-A + cifar-C 9.15+0.26

cifar-A + cifar-B +cifar-C 7.45+0.21

cifar-A 10.48+0.21

756 cifar-A + cifar-B 8.06+0.18
cifar-A + cifar-C 9.78+0.25

cifar-A + cifar-B +cifar-C 8.124+0.20

cifar-A 11.08+0.35

384 cifar-A + cifar-B 8.58+0.22
cifar-A + cifar-C 10.70+0.25

cifar-A + cifar-B +cifar-C 8.29+0.21
cifar-A 11.49+0.20

512 cifar-A + cifar-B 9.22+0.12
cifar-A + cifar-C 11.214+0.27

cifar-A + cifar-B +cifar-C 8.94--0.20

cifar-A 13.22+0.25

1004 cifar-A + cifar-B 10.55+0.21
cifar-A + cifar-C 12.85+0.33

cifar-A + cifar-B +cifar-C 10.234+0.17

Table 6. Accuracy (%) comparison of the models (WRN34-
10) trained on each robust dataset generated from the AT and
AT+BiaMAT models.

FGSM
Source model Clean (mean-+std over 5 runs)
AT 87.49+0.20 30.79+1.16
AT+BiaMAT 88.19+0.16 31.82+£1.06

fer because of the considerable domain discrepancy between
the primary and auxiliary datasets.

Pre-training. Hendrycks et al. [17] demonstrated that Im-
ageNet pre-training can significantly improve adversarial

robustness on CIFAR-10. Although adversarial training on
ImageNet is expensive, fine-tuning on the primary dataset
does not require an extensive number of computations once
the pre-trained model has been acquired. However, once
this has been done, it is difficult to obtain benefit from
the application of cutting-edge methods in the fine-tuning
phase because the hypothesis converges in the same basin
in the loss landscape [30] when trained from pre-trained
weights. For example, as shown in Table 2, TRADES gener-
ally achieves higher adversarial robustness than AT. However,
fine-tuning a pre-trained ImageNet model [17] through AT
and TRADES, respectively, produces two models that ex-
hibit similar levels of adversarial accuracy on CIFAR-10 (see
Table 8). By contrast, the proposed method can directly bene-



Table 7. Comparison (accuracy %) of the effectiveness of BiaMAT with the semi-supervised [4] and pre-training [17] methods on the CIFAR

datasets.
Primary dataset Method Auxiliary dataset Clean AA
CIFAR-100 80.21 42.36
Hendrycks et al. [17] ImageNet 87.11 55.30
CIFAR-100 82.61 50.81
Places365 83.95 52.81
ImageNet 85.42 53.79
CIFAR-10 Carmon et al. [4] TmageNet-500k 86.02 55.63
ImageNet-250k 86.51 56.27
ImageNet-100k 86.87 56.56
Gowal et al. [16] Generated data [20] 85.07 57.62
. CIFAR-100 87.02 55.48
TRAD](EOSu’;glaMAT Places365 87.18 55.24
ImageNet 88.03 56.64
Hendrycks et al. [17] ImageNet 59.23 28.79
Places365 56.74 26.22
ImageNet 63.45 27.71
CIFAR-100 Carmon et al. [4] ImageNet-500k 64.90 28.64
ImageNet-250k 66.18 29.49
ImageNet-100k 65.40 30.61
Gowal et al. [16] Generated data [20] 60.66 29.94
TRADES+BiaMAT Places365 64.58 29.24
(ours) ImageNet 65.82 31.87

Table 8. Comparison (accuracy %) of the effectiveness of pre-
training-based method using pre-trained ImageNet model on
CIFAR-10 according to fine-tuning method

PGD20 PGDI100

57.29 56.99
57.17 57.07

Fine-tuning  Clean

AT 87.11
TRADES  83.97

fit from the application of state-of-the-art adversarial training
methods [43, 4]. BiaMAT does not require complex oper-
ations and can also leverage a variety of datasets, whereas
the pre-training method is effective only when a dataset that
has a distribution similar to that of the primary dataset and
a sufficiently large number of samples is used. To demon-
strate this difference empirically, we adversarially pre-train
the CIFAR-100 and ImageNet models and then adversar-
ially fine-tune them on CIFAR-10. The results in Table 7
demonstrate that the pre-training method is ineffective when
leveraging datasets that do not satisfy the conditions men-
tioned above. In other words, because the effect achieved
by the pre-training method arises from the reuse of features
pre-trained on a dataset that contains a large quantity of
data with a distribution similar to that of the primary dataset,
CIFAR-100 are not suitable for application of the CIFAR-

10 task. Conversely, BiaMAT avoids such negative transfer
through the application of a confidence-based selection strat-
egy. That is, these results emphasize the high compatibility
of the proposed method with a variety of datasets.

Out-of-distribution data augmented training. Out-of-
distribution data augmented training (OAT) [24] was pro-
posed as a means of supplementing the training data re-
quired for adversarial training. Under the assumption that
non-robust features are shared among different datasets,
the authors theoretically demonstrated that using out-of-
distribution data with a uniform distribution label can re-
duce the contribution of non-robust features and empirically
demonstrated that their method promotes the adversarial ro-
bustness of a model. OAT is similar to our proposed method
in that it improves adversarial robustness by using addi-
tional data with a distribution that differs from that of the
primary data. However, OAT does not derive useful infor-
mation in terms of robust feature learning from auxiliary
datasets. This is because OAT can only eliminate the con-
tribution of features from the auxiliary dataset. Therefore,
BiaMAT outperforms OAT when the auxiliary dataset has
a close relationship with the primary dataset in terms of ro-
bust features. By contrast, if the auxiliary dataset contains a



Table 9. Results on CIFAR-10 when ImageNet-100k is auxiliary

Method Clean AA
OAT [24] 86.28 51.54
BiaMAT 88.23 57.01

Table 10. Performance improvements on CIFAR-10 (WRN16-8)

Clean AA
BiaMAT [16] BiaMAT+[16] | BiaMAT [16] BiaMAT+[16]

8451  82.68 83.71 | 5148 5274 53.21

Table 11. The training times of the models in our experiments.

Primary dataset Method Training time (h)

AT 34

AT+BiaMAT (naive) 56

CIFAR AT+BiaMAT 56.5
TRADES 52

TRADES+BiaMAT 103

AT 119

ImgNetlo0 At BiamAT 196

large amount of useful information in terms of non-robust
feature regularization rather than robust feature learning, the
improvements resulting from the applications of OAT and
BiaMAT can be similar.

BiaMAT has two advantages over OAT and RST: (i)
OAT and RST assume that the given auxiliary dataset is
out-distribution (OOD) and in-distribution (ID), respectively.
Hence, if a dataset contains both OOD and ID samples, they
need an additional filtering process. On contrary, BiaMAT is
an end-to-end method that does not need any filtering; (ii) If
the assumptions on auxiliary datasets do not hold, OAT and
RST will perform badly. E.g., OAT using ImageNet-100k
(100k ImageNet samples closest to CIFAR-10) as an auxil-
iary dataset deteriorates the robustness on CIFAR-10. Tab. 9
indicates that in that case the BiaM AT model outperforms
the OAT model by a large margin.

Generated data. Recently, Gowal et al. [16] leveraged
generative models [20] to artificially increase the training
dataset size. They showed that state-of-the-art robust accu-
racy can be achieved by using the increased training dataset.
To be specific, they demonstrated that their proposed method
yields the desired effect under the following conditions: (i)
The pre-trained non-robust classifier (pseudo-label genera-
tor) must be accurate on all realistic inputs. (ii) The genera-
tive model accurately approximate the true data distribution.
From these conditions, we can infer the limitations of their
method. That is, the effectiveness of their method is highly
dependent on the quality of the generative and classifica-
tion models that are solely trained on the original training
dataset; in fact, Tab. 7 demonstrates that the use of syn-
thetic data leads to a significant robustness improvement on
CIFAR-10 (+3.69%), whereas a much smaller robustness
improvement on CIFAR-100 (+1.12%) than that induce by
BiaMAT (+3.05%). In addition, Tab. 7 shows that while
[16] significantly improves robustness against AA, it has
no effect on Clean. Based on these, we investigate whether
the combination of [16] and BiaMAT, which considerably
increases Clean, has a synergistic effect. Tab. 10 indicates
that BiaMAT can further improve [16].

E. Implementation details

In all our experiments, we employed commonly used
data augmentation techniques such as random cropping and
flipping. On the CIFAR datascts, we used WRN28-10 [42]
and WRN34-10 for AT and TRADES, respectively. On
ImgNet100, we used WRN16-10.

Datasets. The CIFAR-10 dataset [22] contains 50K train-
ing and 10K test images over ten classes. The CIFAR-100
dataset [22] includes 50K training and 10K test images over
one hundred classes. Each image in CIFAR-10 and CIFAR-
100 consists of 32 x 32 pixels. The ImageNet dataset [12]
has 1,281,167 training and 100,000 test images over 1,000
classes. Chrabaszcz et al. [8] created downsampled ver-
sions of ImageNet. These datasets (ImageNet32x32 and Im-
ageNet64x64) [8] contain the identical number of images
and their classes as the original ImageNet dataset. The im-
ages therein are downsampled versions having pixel sizes of
32 x 32 and 64 x 64, respectively. SVHN is obtained from a
very large set of images from urban areas in various countries
using Google Street View. The CIFAR datasets are labeled
subsets of the 80 million tiny images dataset [39], and the
80 million tiny images dataset contains images downloaded
from seven independent image search engines: Altavista,
Ask, Flickr, Cydral, Google, Picsearch, and Webshots. The
Places365 images are queried from several online image
search engines (Google Images, Bing Images, and Flickr)
using a set of WordNet synonyms. The ImageNet images are
collected from online image search engines and organized
by the semantic hierarchy of WordNet.

Training time. The training times of the models are sum-
marized in Tables 11. We used a single Tesla V100 GPU
with CUDA10.2 and CuDNN?7.6.5. Because of the increased
training dataset size (and batch size) in the proposed method,
the training time was almost twice that of the baseline
method. Furthermore, a comparison of AT+BiaMAT (naive)
and AT+BiaMAT revealed that the proposed confidence-
based selection strategy requires negligible time.



Table 1. For the experiments in Table 1, we executed 100

training epochs on CIFAR-10. The initial learning rate was

set to 0.1, and the learning rate decay was applied at 60%

and 90% of the total training epochs with a decay factor of

0.1. Weight decay factor and /,-bound were set to 2e-4 and
8_, respectively.

255°

Table 2. For the models associated with AT, we exe-
cuted 100 training epochs (including 5 warm-up epochs) on
CIFAR-10, CIFAR-100, and ImgNet100. The initial learning
rate was set to 0.1, and the learning rate decay was applied at
60% and 90% of the total training epochs with a decay factor
of 0.1. Weight decay factor and ¢,-bound were set to 2e-4
and %, respectively. Based on a recent study [31], for the
models associated with TRADES, we executed 110 training
epochs (including 5 warm-up epochs) on the CIFAR datasets
and ImgNet100. The initial learning rate was set to 0.1, and
the learning rate decay was applied at the 100th epoch and
105th epoch with a decay factor of 0.1. Weight decay factor
and /.-bound were set to 5e-4 and 0.031, respectively.

The hyperparameter « and 7 for each model presented
in Table 1 is summarized in Table 12. From Table 12, it can
be observed that when the proposed method is applied with
AT, it produces good results around « = 1.0 and 7 = 0.5
regardless of the primary dataset used. However, when the
proposed method is applied with TRADES, the optimal set of
hyperparameters are dependent on the characteristics of the
primary task, such as the scale of training loss and its learn-
ing difficulty. For example, the primary task on CIFAR-10
achieves a lower training loss than that on CIFAR-100, and
thus, a smaller « value is required when the primary dataset
is CIFAR-10 than that required when the primary dataset is
CIFAR-100. In addition, when the proposed method is ap-
plied to improve the sample complexity of a high-difficulty
task, the confidence-based selection strategy becomes sen-
sitive to the hyperparameter 7, because the threshold used
by the strategy is determined based on the confidences of
the sampled primary data. Therefore, as a future research
direction, we aim to develop an algorithm that can stably
detect the data samples causing negative transfer.

When CIFAR-10 is the primary dataset, we use the same
adversarial loss function for the primary and auxiliary tasks
under BiaMAT. However, this setting can be problematic
when the TRADES+BiaMAT model is trained on CIFAR-
100. TRADES uses the prediction of natural examples in-
stead of labels to maximize the adversarial loss. In this
respect, when an insufficient training time is applied to a
challenging dataset, such as CIFAR-100 and ImageNet, low-
quality training signals can arise owing to the inaccurate
predictions. Therefore, in our experiment, the cross-entropy
loss with labels is used for auxiliary tasks when the pri-
mary dataset is CIFAR-100. The application of the cross-
entropy loss function allows the TRADES+BiaMAT models

to achieve a high level of adversarial robustness on CIFAR-
100, as shown in Table 2.

Pre-training. In the pre-training phase, the model was
adversarially trained on the auxiliary dataset according to
the implementation details described in Section 3.1. The
fine-tuning phase commenced from the best checkpoint of
the pre-training phase. We adversarially fine-tuned the entire
layers of the pre-trained model on the primary dataset. The
learning rate was set according to the global step over the
pre-training and fine-tuning phase. For example, if the best
checkpoint was acquired at the 65th epoch in the pre-training
phase, the learning rate of the fine-tuning phase commenced
at 0.01 and decreased to 0.001 after 25 epochs. When SVHN
and CIFAR-100 were used as the auxiliary datasets, the
abovementioned type of learning rate schedule rendered
better robustness than that achieved by fine-tuning the model
with a fixed learning rate [17].

E.1. Ablation study on the hyperparameter =

Here, we provide the results of ablation study on 7 in
Table 13. From the results of the AT+BiaMAT model, the
effectiveness of BiaMAT is smooth near the optimal © when
it is applied with AT. In the results of TRADES+BiaMAT,
however, it can be seen that the effectiveness of the proposed
method is relatively sensitive to 7 when it is applied with
TRADES. We speculate that this is because of the relatively
complex loss function of TRADES, which introduces an-
other regularization hyperparameter 3 [43]. Therefore, in
future work, we will develop advanced algorithms that adap-
tively control the threshold in BiaMAT for learning stability.

F. Additional analysis of the confidence-based
selection strategy

Since robust features exhibit human-perceptible patterns,
we conjecture that auxiliary data samples more related to the
primary dataset classes can contribute more to robust feature
learning. From this motivation, we design our algorithm to
use the expectation of random labels for the less-related sam-
ples. In particular, we adopt an automatic confidence-based
sample selection strategy, widely used in existing novelty
detection literature [19]. To understand how the proposed
confidence-based selection strategy works in practice, we
analyze the ratio of samples having higher confidences than
the confidence threshold (i.e., w in Algorithm 1). If a sample
contributes more to learn robust features, it tends to have a
higher confidence score than less contributed samples.

‘We use the AT+BiaMAT model in Table 2, trained on
the CIFAR-10 dataset with the ImageNet auxiliary dataset.
The model shows 88.75% clean accuracy and 50.78% robust
accuracy on AA. Table 14 shows the average higher-than-
threshold ratio (i.e, the ratio of samples contribute to learn



Table 12. The hyperparameter o and 7 for each model in Table 2

Primary dataset Method

Auxiliary dataset o T

AT+BiaMAT
CIFAR-10

SVHN
CIFAR-100
Places365
ImageNet

1.0 0.55

TRADES+BiaMAT

CIFAR-100
Places365 0.5 0.5
ImageNet

AT+BiaMAT
CIFAR100

Places365

ImageNet 1.0 0-5

TRADES+BiaMAT

Places365

ImageNet 1.0 0.3

ImgNet100 AT+BiaMAT

Places365

ImgNet900 1.0 0.3

Table 13. The results of ablation study on 7. Primary dataset:
CIFAR-10; Auxiliary dataset: ImageNet.

Method s AA
0.45 49.85
0.50 50.35
. 0.55 50.78
AT+BiaMAT 060 5032
0.65 50.35
0.70 50.69
045 56.42
0.50 56.64
. 0.55 56.21
TRADES+BiaMAT 060 5470
0.65 54.95
0.70 54.04

robust features) of ImageNet training images by the model.
We show the average higher-than-threshold ratio for each
CIFAR-10 superclasses. We match classes of two datasets
by using the ImageNet synset following CINIC-10 [11]".
In Table 14, we observe that the related classes show
higher selection ratio (larger than 50%) than the dismatched
classes (29%) and the entire average (33.5%). In other words,
the auxiliary samples with CIFAR-10 superclasses con-
tribute more to robust feature learning than less related sam-
ples (“Others” in Table 14). We also illustrate the samples
from the class “aircraft carrier”, showing 87.0% higher-than-
threshold ratio in Figure 4. In the figure, the highest confident

'We follow the official synset mapping used by CINIC-10
https://github.com/BayesWatch/cinic-10/blob/
master/synsets—-to-cifar-10-classes.txt

(a) The top-10 highest confident samples from “aircraft carrier” class

(b) The top-10 lowest confident samples from “aircraft carrier” class
Figure 4. The top-10 highest and lowest confident ImageNet train-
ing samples (“aircraft carrier” class) by the BiaMAT trained classi-
fier on CIFAR-10

samples plausibly match to the CIFAR-10 superclasses, such
as “Ship” and “Airplane”. On the other hand, the lowest
confident samples, therefore their labels are shuffled during
the training, seem to be less related to the CIFAR-10 su-
perclasses and the original CIFAR-10 training images. The
low confident samples can take a role of “out-of-distributed”
dataset that can improve the confidence-based selection strat-
egy as shown in [19].

Finally, we take a look into the “Others” classes as well.
While the CIFAR-10 related classes show high higher-than-
threshold ratios, we also witness that some classes not
highly related to the CIFAR-10 superclasses, but weakly
related to them also show high higher-than-threshold ra-
tios. For example, (“grey whale”, 0.750), (“promontory”,
0.749), (“breakwater”, 0.734), (“dock”, 0.730), (“geyser”,
0.728), and (“sandbar”, 0.717) are not directly included in the
CIFAR-10 superclasses, but share the similar environmental
backgrounds (e.g., “grey whale” and ““ship” are usually on
the ocean background). The multi-domain learning strategy
by BiaMAT let the model learn an auxiliary information by
discriminating between such weakly related auxiliary classes



Table 14. Average higher-than-threshold ratio of the ImageNet training images by the AT+BiaMAT-trained CIFAR-10 classifier. The
fine-grained ImageNet classes are mapped to CIFAR-10 superclasses by the WordNet hierarchy. “All” denotes the entire training ImageNet
images. “Deer” and “Horse” classes has zero error because there is only one ImageNet class matched to each of them (Table ??).

CIFAR-10 Superclass  Average higher-than-threshold ratio  Standard error

Airplane 0.849 0.096
Automobile 0.706 0.163
Bird 0.554 0.143
Cat 0.501 0.136

Deer 0.720 -
Dog 0.592 0.103
Frog 0.653 0.070

Horse 0.819 -
Ship 0.677 0.215
Truck 0.763 0.129
Others (dismatched) 0.290 0.196
All 0.335 0.219

and the CIFAR-10 superclasses. Our BiaMAT can learn bet-
ter robust features by the additional tasks to discriminate
weak auxiliary classes from the target classes.

To sum up, our confidence-based selection strategy let the
model learn better robust features from plausible extra im-
ages, while less plausible images improve the performance
of the confidence-based selection strategy. At the same time,
the multi-domain learning strategy by BiaMAT makes the
model learn discriminative features between the samples
highly correlated with target classes and the sample weakly
correlated with targets (e.g., “grey whale”), thus BiaMAT
shows a good robust feature learning capability. Therefore,
BiaMAT can learn diverse and fine-grained features using ex-
tra images related to the target classes without suffering from
the negative transfer, resulting in showing better robustness
generalizability.

From these observations, we conclude that by learning
robust features from extra images but related to the primary
dataset, a model can learn more diverse and fine-grained
features, resulting in better robustness generalizability.



