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Type Layer Output Shape

- Image 256× 256× 3
backbone ResBlk 256× 256× 128
backbone ResBlk 128× 128× 256
backbone ResBlk 64× 64× 512
backbone ResBlk 32× 32× 512
backbone ResBlk 16× 16× 512

branch: shared 1× 1 ResBlk 16× 16× 512
branch: disc 1× 1 Conv 16× 16× 1
branch: proj 1× 1 Conv 16× 16× 256

backbone ResBlk 8× 8× 512

branch: shared 1× 1 ResBlk 8× 8× 512
branch: disc 1× 1 Conv 8× 8× 1
branch: proj 1× 1 Conv 8× 8× 256

backbone ResBlk 4× 4× 512
backbone Flatten 8192
backbone Linear 512

branch: disc Linear 1
branch: proj Linear 256

Table 1. Discriminator Architecture of MsConD.

1. Network Architecture

Table 1 shows the architectural details of MsConD dis-
criminator. Our discriminator is built upon the backbone
resnet-based discriminator used in StyleGAN2 [4]. We use
branches to process the feature map at each level, where
each branch consists of three components: a shared block,
a discriminator head and a projection head. The shared
block consists of 3 1× 1 convolutional layers with residual
connections. The shared block translates a feature map in
the backbone network into an intermediate feature map of
the same size. The intermediate feature map is then pro-
jected into two different outputs each by a discriminator
head and a projection head, where both head layers are im-
plemented with 1× 1 convolutional layers. The discrimina-

tor head is a single convolutional layer, while the projection
head consists of two convolutional layers, i.e., Conv-ReLU-
Conv. We set the channel dimension of the projection out-
put, i.e., Cp, as 256. We use ReLU activation for all layers
in branches.

2. Additional Evaluation
2.1. Additional Ablation Result

Figure 1 shows quantitative ablation result for each ob-
ject category. We observe similar tendency as the scene-
level ablation result (see Figure 4 in the main paper). The
generation performance increases as more feature maps
from the backbone layers are utilized even when multi-scale
contrastive learning is not applied. However, the perfor-
mance is significantly improved as the contrastive learning
is leveraged as an auxiliary task. The improvement has been
consistent across various object categories validating the ef-
ficacy of MsConD in synthesizing local objects.

2.2. Analysis on Training Dynamics.

To further understand the training behavior of MsConD,
we investigate the statistics of discriminator logits for real
and fake images during the training process. Figure 2 shows
the result on Cityscapes. For StyleGAN2, the logit distri-
butions overlap during the initial training period and then
gradually move away from each other. Therefore, as the
training progresses, the discriminator becomes overly con-
fident and fails to provide meaningful feedback to the gener-
ator, resulting in degraded synthesis quality. To mitigate the
overfitting of discriminator, previous studies mainly focus
on developing differentiable image augmentations [2, 6].
Our findings indicate the problem could be substantially al-
leviated by utilizing multi-scale adversarial feedback.

Figure 2 (b-d) presents the results when local discrimi-
nator feedback is incorporated by our proposed discrimina-
tor. As shown, the logit distributions of real and fake sam-
ples remain within a close range for the entire training pe-
riod, indicating that the discriminator can continuously pro-
vide informative feedback without overfitting. Meanwhile,
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Figure 1. Quantitative ablation result for each object category. Comparison results in terms of object-level FID under different model
configurations. For each configuration, we plot the results when different scales of feature maps are utilized. For example, ‘1-8’ means
that the model uses feature maps whose height is from 1 to 8.

we could observe that the fake logits for higher frequency
part, i.e., D16

disc(x), tend to be unstable with large devia-
tions. This instability stems from large structural variations
of high frequency patterns in complex scenes. Figure 2 (e-g)
shows that the auxiliary representation learning effectively
stabilizes the feedback signal, in turn further improves the
synthesis quality.

3. Additional Samples

Additional samples generated with MsConD. In Figure
3, we show additional samples generated by MsConD. Each
row shows samples containing different objects of each ob-
ject category. We mark the object bounding boxes detected
by the object detector to emphasize the synthesis quality of
individual objects.

Additional samples for comparison. For comparisons to
the state of the art models, we provide more uncurated sam-
ples generated by different models in Figure 4, 5, 6. Com-
pared to baselines, MsConD produces convincing results of

more realistic scene images with improved local details.
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Figure 2. Training progress on Cityscapes. Evolution of discriminator logits during training in (a) StyleGAN2, (b-d) MsConD without
contrastive learning (MultiscaleD), and (e-g) MsConD. Here, the superscripts in each discriminator output notation represent the height of
the output map at that scale, i.e., Hl. The horizontal axis of each plot corresponds to the training iterations (in number of images). The
bold line indicates mean value of logits and the transparent area indicates the deviation.
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Figure 3. Samples Generated with MsConD. Each row shows samples containing objects of each object category. All images are
generated with truncation trick following [3, 2]. We recommend zooming in to inspect the synthesis quality of individual objects.
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Figure 4. Uncurated Samples for Cityscapes [1]. All images are randomly sampled with truncation trick following [3, 2]. We recommend
zooming in to compare scene details.
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Figure 5. Uncurated Samples for Livingroom [5]. All images are randomly sampled with truncation trick following [3, 2]. We recommend
zooming in to compare scene details.
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Figure 6. Uncurated Samples for Kitchen [5]. All images are randomly sampled with truncation trick following [3, 2]. We recommend
zooming in to compare scene details.


