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Abstract

In the supplementary material, we further present (1) il-
lustration of the suggested approaches for the adaptation of
class incremental learning (CIL) methods to the continual
deepfake detection problem (CDD), (2) training details of
the evaluated methods on the proposed continual deepfake
detection benchmark (CDDB), (3) study on more essential
components of CIL methods on the suggested CDDB, (4)
evaluation on the GANFake [8] dataset, (5) experiments on
the generalization capability of the suggested CIL methods
to unseen domains and corrupted test images, and (6) more
overviews of the suggested CDDB evaluations.

1. Illustrations of Adapting CIL to CDD
In the main paper, we study three main adaptations of

CIL methods for CDD. Fig.1 illustrates the suggested three
approaches that adapts the exiting CIL methods to the con-
text of CDD.

2. Training Settings
We evaluated three types of the state-of-the-art class in-

cremental learning (CIL) methods on the suggested CDDB.
Gradient-based Method. We used the official code of the
null space class incremental learning method (NSCIL) [13],
which is one of the state-of-the-art gradient-based methods.
We followed the official code’s setup to tune the hyperpa-
rameter λ from the default setup {10, 30} to the new set-
tings {100, 1}, which is used to select the smallest singular
values corresponding to the null space. The larger λ leads
to larger approximate null space, increasing the plasticity to
learn new tasks while decreasing the memorization of old
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Figure 1. Three main adaptions (a), (b), (c) of multi-class incremental learning
for CDD. Here R,F indicate the logits/features for reals and fakes respectively, and
t is the number of deepfake tasks.

tasks [13]. We trained the NSCIL model for 12 epochs in
total, as we found that training more epochs for NSCIL re-
sulted in performance degradation. The initial learning rate
is 0.001 for the first task and 0.0001 for all other tasks and
is divided by 2 after 4 and 8 epochs for the EASY evalua-
tion. For batch normalization layers, the learning rate starts
from 5×10−5. The other parameters are the same as official
NSCIL implementation.
Memory-based Method. We employed latent replay class
incremental learning (LRCIL) [10], which is one of the
most effective and efficient memory-based methods. LR-
CIL was trained in the NSCIL’s framework, with 20 epochs
in total, the initial learning rate is 0.001 for the first task
and 0.0001 for all other tasks and is divided by 2 after 10
and 15 epochs for the EASY, HARD, LONG evaluations.
For batch normalization layers, the learning rate starts from
5× 10−5. For the GANfake evaluation, we used 60 epochs
instead and the initial learning rate is divided by 2 after 20
and 40 epoch. Following original LRCIL’s implementation,
there is no knowledge distillation loss. We also tried to add
distillation loss with a factor γd = 0.3. And we chose the
second layer as latent layer. We used Adam with the batch



size 32 to train the network.
Distillation-based Method. We utilized five state-of-the-
art distillation-based methods, i.e., incremental classifier
and representation learning (iCaRL) [11], Learning a Uni-
fied Classifier Incrementally via Rebalancing (LUCIR) [6],
Dynamic Token Expension (DyTox) [4], as well as Com-
positional Class Incremental Learning (CCIL) [9], which
is additionally evaluated in the Supp. Material. Besides,
we also evaluated the multi-task variant of iCaRL (iCaRL-
SumLog) [8].
For iCaRL, we trained its model for 30 epochs in total. The
learning rate starts from 0.0001 and is divided by 10

3 after
10 and 20 epochs for the EASY, HARD and LONG evalua-
tions. For GANfake sequences, we used 60 epochs instead
and the initial learning rate 0.001 is divided by 10

3 after 20
and 40 epoch. Following the original iCaRL’s implementa-
tion, γd was set to 1 for knowledge distillation loss ℓdistill
with temperature as T = 1. We used Adam with the batch
size 32 to train the network.
For CCIL, we used its official code1. The initial learning
rate, total epoches and learning rate decay are the same
as iCaRL. We tried the method with (γd = 0.3) or with-
out (γd = 0) knowledge distillation ℓdistill. Also, we
tried it with or without applying mixup and label smoothing
techniques to the whole training process which is different
from the original implementation (only for the first training
phase), and we followed the relevant parameters (e.g, mixup
weight). We used Adam with the batch size 32 to train the
network. The other parameters are the same as the official
implementation of CCIL.
For LUCIR, the learning rate starts from 0.0001 and is di-
vided by 10 after 16 and 33 epochs (50 epochs in total) for
the LONG evaluation. For the EASY, HARD and GAN-
fake evaluations, we used 40 epochs and the learning rate
is divided by 10 after 13 and 26 epoch. γd is set to 0.5
for knowledge distillation loss ℓdistill. γm was set to 0.1
for supplementary loss ℓsupp. Within ℓsupp, the number of
closest class embeddings J was set to 2 and the threshold
τ was set to 0.2 for all experiments. The other parameters
are the same as official LUCIR implementation. We used
Adam with the batch size 32 to train the LUCIR network.
For DyTox [4], we used its official implementation2 with
the default settings on its hyperparameters. DyTox [4] origi-
nally suggests training its backbone from scratch. However,
this case’s performance (about 56%) is much lower than that
of training from the ImageNet pre-trained base-ConViT3 on
CDDB-Hard500. Therefore, we apply the pre-trained base-

1https://github.com/sud0301/essentials_for_CIL
2https://github.com/arthurdouillard/dytox
3We empirically find that the performance (AA=96.14%) of ImageNet

pre-trained ConViT is very comparable to that (AA=96.29%) of the one
that is further fine-tuned on ProGAN for the EASY1500 evaluation. There-
fore, for the transformer-based networks, we suggest only using ImageNet
pre-trained models without the further warm-up step on ProGAN.

ConViT for DyTox throughout the paper.
For a fair comparison, except for DyTox that is based on

an ImageNet pre-trained transformer ConViT [5], we used
the state-of-the-art deepfake CNN detector (CNNDet) [14],
which applies a ResNet-50 pretrained on ImageNet [3] and
ProGAN [7] as the backbone for all the remaining methods
over the proposed CDDB. For the multi-task (MT) learn-
ing variants of the evaluated CIL methods, the study on the
trade-off hyperparameter λ is presented in Table 1. In Ta-
ble 1, we aim to compare all the colorized triplets (LRCIL,
iCaRL, LUCIR)’s performances to see which triplets con-
sistently perform well. Each triplet should be of the same
MT variant and the same λ value (e.g., LRCIL-SumLogit-
0.3, iCaRL-SumLogit-0.3, LUCIR-SumLogit-0.3). By
comparing these triplets in terms of their average perfor-
mances on (LRCIL, iCaRL, LUCIR), we can see that the
SumLogit case (λ = 0.3) works the most promisingly on
the CDDB-EASY1500 evaluation. Furthermore, it is not
feasible to tune the hyperparameters on the test data in the
real-world scenario. Accordingly, we used the same hyper-
parameter λ = 0.3 for all the MT variants of LRCIL, iCaRL
and LUCIR throughout the main paper.

3. Study on More Essentials
Table 2 studies more essentials in CIL on CDDB. They

are cosine normalization on linear fully connected (FC)
layer, label smoothing and mixup techniques.
Linear FC (LinFC). The main paper finds that performing
cosine normalization on FC (CosFC) layers result in LUCIR
[6] and CCIL [9] is clearly inferior performance than using
LinFC. This is because CosFC is originally designed to ad-
dress the class imbalance issue, which however is much less
serious in the CDD context. We additionally apply LinFC to
CCIL* [9] that further drops knowledge distillation. We can
see that the LinFC version of CCIL* also performs better
than its corresponding CosFC version, enhancing the con-
clusion that CosFC is too hard for class imbalance based
normalization so that it really hurts the CDD performance.
Label Smoothing (LabelSM). We also study LabelSM that
is commonly used to improve generalization and reduce
overconfidence of classification models [12, 9]. This tech-
nique affects the cross-entropy loss for classification by in-
terpolating the one-hot labels with a uniform distribution
over the possible classes [9]. From the results in Table 2, we
can discover that LabelSM slightly improves the AA scores
in the cases of iCaRL [11] and LUCIR [6], while hurting
the AA scores in the case of LRCIL [10] and CCIL [9].
Mixup. We further employ Mixup that is used a form of
data augmentation for better clarification in general. The
mixup technique is to generate training samples by linearly
combining pairs of training samples (i.e., images and la-
bels). Following [9], we applied the mixup data to the train-
ing data and merely used them (no original training data)



CDDB-EASY1500
Learning System Evaluated Method 0.1 0.3 0.5 0.7 0.9

Multi-task (MT) learning

LRCIL[10]-SumLog[8] 89.54 88.76 86.51 87.08 87.20
iCaRL[11]-SumLog[8] 88.97 87.05 87.51 87.39 86.29
LUCIR[6]-SumLog[8] 91.65 91.56 92.05 91.39 91.08
LRCIL[10]-SumLogit 89.38 89.33 88.08 88.52 87.71
iCaRL[11]-SumLogit 88.52 90.43 90.37 87.88 87.57
LUCIR[6]-SumLogit 91.48 92.00 91.90 91.11 91.67
LRCIL[10]-SumFeat 88.23 87.81 88.33 87.68 86.27
iCaRL[11]-SumFeat 87.37 87.74 86.26 86.52 85.46
LUCIR[6]-SumFeat 91.75 91.81 91.03 91.28 91.48
LRCIL[10]-Max 89.17 89.16 87.83 88.27 85.66
iCaRL[11]-Max 90.11 89.92 89.76 90.78 87.11
LUCIR[6]-Max 91.30 91.21 91.20 91.35 91.04

Table 1. Empirical study on different multi-task learning trade-off parameter λ values for the suggested CDDB’ EASY1500 evaluation. The reported results are Average
Accuracies (AA) for continual deepfake detection. Bold: best green/blue/red results, Underline: second/third best green/blue/red results. The best/second-best/third-best LRCIL,
iCaRL, LUCIR results are in green, blue, and red respectively. Note that we aim at comparing all the colorized triplets (LRCIL, iCaRL, LUCIR)’s performances to see which
triplets consistently perform well. Each triplet should be of the same MT variant and the same λ value.

CDDB-EASY1500
Learning System Evaluated Method Task1 Task2 Task3 Task4 Task5 Task6 Task7 AA AF AA-M

Multi-class (MC)
learning

LRCIL[10] 83.50 77.88 90.84 98.90 84.75 98.86 65.92 85.81 -5.88 67.11
iCaRL[11] 77.50 71.38 91.22 99.57 95.66 99.92 78.28 87.65 -9.41 65.39
LUCIR(CosFC)[6] 81.05 88.25 94.47 99.73 90.30 99.73 57.15 87.24 -6.32 63.27
CCIL(CosFC)[9] 55.65 56.88 67.18 89.34 75.88 89.38 64.32 71.23 -22.01 39.53
CCIL*(CosFC)[9] 58.35 60.00 71.37 86.25 90.48 86.21 71.01 74.81 -22.56 48.66
LUCIR[6]-LinFC 91.60 89.12 92.56 99.76 94.45 99.80 71.21 91.21 -2.88 74.62
CCIL[9]-LinFC 60.50 66.12 81.49 96.16 73.38 98.55 60.45 76.66 -16.50 41.85
CCIL*[9]-LinFC 62.70 70.75 82.63 98.51 90.76 99.80 75.42 82.94 -13.24 61.95
LRCIL[10]-LabelSM 72.70 74.13 89.89 99.45 92.14 99.57 72.52 85.77 -5.93 68.17
iCaRL[11]-LabelSM 79.55 80.62 90.46 99.84 89.37 99.84 80.17 88.55 -8.93 71.82
LUCIR[6]-LabelSM 84.15 85.75 94.47 100.00 93.25 100.00 82.36 91.42 -5.31 77.35
CCIL*[9]-LabelSM 58.60 65.25 61.83 98.43 88.54 98.43 72.52 77.66 -18.16 53.85
LRCIL[10]-Mixup 52.30 52.13 62.40 85.54 78.65 96.94 70.00 71.14 -25.91 35.43
iCaRL[11]-Mixup 78.05 84.88 94.47 100.00 94.09 100.00 80.47 90.28 -6.95 75.42
LUCIR[6]-Mixup 82.31 87.22 90.70 96.32 92.98 93.21 70.59 87.62 -6.54 70.93
CCIL*[9]-Mixup 57.80 66.25 80.34 98.63 72.27 98.9 73.92 78.30 -18.98 55.16

Table 2. Benchmarking results on essentials of CIS methods on CDDB’s EASY evaluation. CCIL* indicates the CCIL method without using knowledge distillation loss. AA:
Average Accuracy for deepfake detection, AF: Average Forgetting degree, AA-M: Average Accuracy for deepfake recognition. The AA results of LRCIL, iCaRL, LUCIR, CCIL
are in green, blue, red, and brown respectively.

GANfake [8]
1024 512

Learning System Evaluated Method AA AF AA AF

Multi-task learning
iCaRL [11]-SumLog [8] 91.72 -4.28 90.32 -5.71
iCaRL [8]-SumLogit 93.19 -1.02 86.77 -10.09
LUCIR [6]-SumLogit 92.67 -2.34 91.88 -2.65

Table 3. Continual GANfake detection accuracies of the main evaluated methods
on the GANfake dataset [8] after the training on the last GAN using different memory
budgets (1024 and 512).

to train the evaluated methods. It is interesting to see that
mixup brings a clear performance degradation in the case
of LRCIL. This is because the mixup operations are per-
formed in the space of raw images, which is not consistent
with learning mechanism of LRCIL that performs rehearsal
in the latent space of feature maps. Except for LRCIL and
CCIL*, the other two methods iCaRL, LUCIR favor the
mixup technique for further improvement in terms of AA
on the suggested CDDB.

4. Evaluation on the GANfake Dataset
For the GANfake [8] dataset4, Table 3 summarizes the

evaluation results of the four main evaluated methods, i.e.,
the variant of iCaRL method [8], our suggested SumLogit
variants of LRCIL [10], iCaRL [11] and LUCIR [6]. The
results show that the suggested MT variants mostly work
better than the original one (i.e., SumLog). From the overall

4Since the GANfake [8] dataset does not release the detailed train/val/test splits,
we can merely evaluate the methods on our own splits following the description in
the oiriginal paper. Accordingly, the reported results are not really comparable with
those reported in [8].

results, we can find that the highest AA score5 (i.e., 93.19)
for the case of memory budget=1024 on GANfake is clearly
higher than the one (i.e., 82.53) on our suggested CDDB-
HARD1000 (memory budget=1000). Besides, the highest
AA score (i.e., 91.88) for the case of memory size=512
on GANfake is much higher than the one (i.e., 80.77) on
the suggested CDDB-HARD evaluation with memory bud-
get = 500. Moreover, the highest AA score (i.e., 93.19)
on GANfake (memory size=1024) is even higher than the
one (i.e., 92.00) of our easiest evaluation, i.e., CDDB-
EASY1500 (memory size=1500). This implies that our sug-
gested CDDB is clearly more challenging than GANfake,
and therefore we believe it will has a high potential to pro-
mote more solid research in the domain of continual deep-
fake detection.

5. Experiments on the Generalization Capabil-
ity of Suggested Methods

The knowledge accumulation nature of the suggested
CDDB allows for a better generalization to deepfakes from
unseen domains. To verify this, we compare the adapted
continual learning methods (e.g., LRCIL [10], iCaRL [11],
LUCIR [6]) against CNNDet [14] (pre-trained on ProGAN)
and CNNDet [14]-Finetune (starts from ProGAN to the

5The reported highest AA is 97.22 in GANfake [8] when the memory budget is
1024. It is even higher than our reported one, while their train/val/test splits in [8] are
different from ours.



IMLE CRN Glow Average Acc (↑) mean Average Pre (↑)
CNNDet [66] 53.64 53.64 45.56 50.95 81.61
CNNDet [66]-Finetune 50.43 50.27 50.00 50.23 52.19
LRCIL[51]-Adapted 76.72 93.06 68.02 79.28 87.78
iCaRL[52]-Adapted 83.31 84.17 66.73 78.07 82.31
LUCIR[23]-Adapted 70.02 93.30 70.90 78.07 86.39

Table 4. Accuracies of generalization of the trained models on CDDB-Hard to
3 unseen domains (IMLE, CRN, Glow), which are of non-GANs and thus highly
heterogeneous to the used CDDB-Hard data. Bold: best, Underline: second best.
Note that we have different test data on IMLE and CRN from CNNDet [66] that has
no Glow data, the reported mean average precisions (mAPs) are somewhat different.

GauGAN BigGAN WildFake WhichFace SAN Average Acc (↑)
CNNDet 53.80 58.00 61.50 48.96 63.33 57.12
CNNDet[66]-Finetune 50.95 50.25 52.73 48.25 71.11 54.66
LRCIL[51]-Adapted 61.20 61.75 56.86 59.75 48.89 57.69
iCaRL[52]-Adapted 67.35 64.38 66.36 69.75 56.67 64.90
LUCIR[23]-Adapted 62.45 61.00 56.42 56.75 57.78 58.88

Table 5. Accuracies of generalization to corrupted (Blur+JPEG) test images that
are from the five tasks of CDDB-Hard. Bold: best, Underline: second best

CDDB-Hard data stream). Due to the CDD setup, we can-
not compare CNNDet trained directly on the whole data
stream. Table 4 reports the results, showing the clearly
better generalization of our adapted ones. On the other
hand, we also test the generalization ability of these meth-
ods to corrupted test images using the same strategy, i.e.,
Blur+JPEG (0.5), from [14]. Note that [14] suggests
Blur+JPEG (0.5) for data augmentation during training, and
testing on clean images. Despite no Blur+JPEG augmenta-
tion for training, our adapted ones (especially iCaRL) gen-
erally work better than the competitors (Table 5).

6. More Overviews of Five CDDB Evaluations
Fig.2 presents radar plots on the four evaluation metrics,

i.e., AAs, AFs, mAPs and AA-Ms, of the evaluated meth-
ods for EASY1500, LONG1500, HARD1500, HARD1000,
and HARD500, where 1500, 1000, 500 are three studied
memory budgets, AA, AF, AA-M, mAP are Average Ac-
curacy for deepfake detection, Average Forgetting degree,
Average Accuracy for deepfake recognition, and mean Av-
erage Precision respectively. The mAP is calculated by the
mean of areas under the precision-recall (PR) curves. For
those multi-class and multi-task learning methods, we feed
the PR calculation function with the normalized value of
the maximum φ(·) activation output on fakes. Formally, the
normalized value is pF = MF

MF+MR
, where MR and MF

are the maximum φ(·) activation values for reals and fakes
respectively.

From the overall results in Fig.2, we can see that LUCIR-
MT (multi-task learning) generally works the best than the
other evaluated methods in terms of AA, AF, AA-M and
mAP for the five evaluations. By comparing the five differ-
ent evaluations, HARD500’s AA, AF, AA-M, mAP scores
are clearly worse than the other four evaluations. This im-
plies that the detection over HARD500 is the most chal-
lenging. In particular, it suffers from much more serious
catastrophic forgetting due to the smaller memory budget.
Fig.3 and Fig.4 present the PR curves of the LUCIR method
and the DyTox method for the five evaluations EASY1500,

Figure 2. Radar plots on AAs, AFs, mAPs and AA-Ms of the evaluated methods for
EASY1500, LONG1500, HARD1500, HARD1000, and HARD500, where 1500, 1000,
500 are memory budgets, BC/MC/MT: binary-class/multi-class/multi-task learning
methods that have the highest AAs/mAPs, AA: Average Accuracy (detection), AF:
Average Forgetting degree, AA-M: Average Accuracy (recognition), mAP: mean Av-
erage Precision, i.e., the mean of areas under the PR curve.

LONG1500, HARD1500, HARD1000, and HARD500. The
PR curves demonstrate that the most difficult tasks are gen-
erally the ones on SAN [2], WildDeepfake [15], and Which-
FaceReal [1] for the different evaluations. This is because
SAN is a small data set, and WildDeepfake/WhichFaceReal
consists of unknown deepfakes in the wild scenes.
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and Matthieu Cord. Dytox: Transformers for continual learn-
ing with dynamic token expansion. In CVPR, 2022.
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