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Appendix A: Additional Results
In this section, we provide additional results to better

understand PrCL.

Table 1. Comparison of different predictive tasks for PrCL’s predic-
tive branch. The table shows the performance of PrCL on Colorful-
Moving-MNIST with different predictive tasks in its predictive
branch for the fixed feature encoder setting. Colorization achieves
good performance on background classification, but bad perfor-
mance on digit classification since the MNIST digits have no RGB
information. Inpainting achieves the best performance among these
predictive tasks.

Colorful-Moving-MNIST

Recon. Tasks
DIGIT CLS
ACC. (%)

BKGD CLS
ACC. (%)

No Recon. 15.7 48.5

Jigsaw Puzzle 16.1 47.7
Colorization 63.9 47.0
Autoencoder 65.6 42.9
Inpainting 88.3 46.5

I. Comparison of Different Predictive Tasks for PrCL’s
Predictive Branch: In PrCL, we choose the inpainting task
for the predictive branch. However, other predictive tasks
can be potentially used for the predictive branch. In this
section, we evaluate the performance of PrCL with differ-
ent predictive tasks including Jigsaw Puzzle [6], inpainting,
auto-encoder and colorization [9]. Table 1 shows PrCL’s
performance using different predictive task on Colorful-
Moving-MNIST under the fixed feature extractor setting.
As shown in the table, all predictive tasks except for Jigsaw
Puzzle significantly reduce errors on digit classification in
comparison to using contrastive learning without any pre-
dictive task. This is because the Jigsaw Puzzle task does
not require the features to be able to reconstruct the origi-
nal image, but just to restore the order of different patches.

*Indicates equal contribution.

Learning the background object is sufficient to solve Jigsaw,
and the network does not have incentives to learn the digit.
The table also shows that inpaintaing compares favorably
to other predictive tasks and achieves good performance on
both downstream tasks. Hence, we use inpainting as the
default predictive task in PrCL.

Table 2. Performance of MoCo on Colorful-Moving-MNIST with-
out masking augmentation (fixed feature encoder setting). The
results demonstrate that simply adding masking as a data augmen-
tation does not achieve similar improvements as PrCL.

Colorful-Moving-MNIST

Recon. Tasks
DIGIT CLS
ACC. (%)

BKGD CLS
ACC. (%)

MoCo w/o masking 15.7 48.5
MoCo w/ masking 15.2 48.4
PrCL 88.3 46.5

II. Masking as a Data Augmentation vs. PrCL: In the
predictive branch, PrCL introduces masked input images.
Some may wonder whether the improvements are coming
from this masking operation, since cutting out the input sig-
nals can be viewed as one way of augmentation [2]. However,
here in Table 2, we show the performance of MoCo with and
without masking augmentation on Colorful-Moving-MNIST
(we use the same masking strategy as the predictive branch
of PrCL). As shown in the table, the performance of MoCo
stays similar with or without masking augmentation. This
demonstrate that the improvements of PrCL do not come
from this augmentation.

III. Warm-up Training: To show the effectiveness of the
proposed warm-up training strategy (Sec. 3 (c)), we compare
the results of warm-up training with the results of directly us-
ing the combined loss L (i.e., combining the prediction loss
and the contrastive loss) from the beginning. As shown in
Table 7, without the warm-up training, on Colorful-Moving-
MNIST, PrCL largely degenerates to become similar to the



Table 3. Digit classification and background classification accuracy of PrCL with different λ on Colorful-Moving-MNIST dataset.

λ 0 1 5 10 25 50 100 200 500 1000

DIGIT ACC (%) 15.7 48.6 69.8 88.3 88.2 88.3 88.1 87.5 86.3 85.0

BKGD ACC (%) 48.5 47.9 47.5 47.2 47.2 47.1 47.0 45.7 44.5 40.5

Table 4. Performance of PrCL and predictive baselines on MPII for the downstream task of human pose estimation. ↑ indicates the larger the
value, the better the performance.

METRIC Head↑ Shoulder↑ Elbow↑ Wrist↑ Hip↑ Knee↑ Ankle↑ PCKh↑

FIXED
FEATURE

EXTRACTOR

Inpainting 83.4 75.2 53.6 44.4 56.4 44.3 45.7 59.0
Colorization 79.5 71.2 49.6 42.1 54.2 40.7 41.9 55.1
Autoencoder 79.1 70.1 47.2 41.6 51.9 39.1 40.3 53.8

PrCL (ours) 85.7 78.8 61.7 51.3 64.4 55.6 49.2 65.1
IMPROVEMENTS +2.3 +3.6 +8.1 +6.9 +8.0 +11.3 +3.5 +6.1

FINE-
TUNING

Inpainting 96.3 95.2 87.9 82.1 87.8 82.5 77.6 87.7
Colorization 96.2 95.1 87.7 82.1 87.8 82.5 77.5 87.6
Autoencoder 96.0 94.9 87.6 82.0 87.6 82.4 77.3 87.5

PrCL (ours) 96.3 94.9 88.1 82.3 87.9 82.8 77.8 87.8
IMPROVEMENTS +0.0 -0.3 +0.2 +0.2 +0.1 +0.3 +0.2 +0.1

Table 5. Performance on FairFace with PrCL and different predictive
unsupervised learning methods. The models are evaluated on downstream
tasks of age, gender and ethnicity classification.

METRIC
AGE CLS
ACC. (%)

GENDER CLS
ACC. (%)

ETHN. CLS
ACC. (%)

FIXED
FEATURE

EXTRACTOR

Inpainting 46.3 83.6 52.9
Colorization 46.1 82.9 53.8
Autoencoder 44.3 80.1 50.7

PrCL (ours) 50.0 87.2 61.2
IMPROVEMENT +3.7 +3.6 +7.4

FINE-
TUNING

Inpainting 55.0 91.8 68.3
Colorization 54.9 92.0 68.6
Autoencoder 54.5 91.3 67.9

PrCL (ours) 55.3 92.3 69.0
IMPROVEMENT +0.3 +0.3 +0.4

Table 6. Performance on Colorful-Moving-MNIST under dif-
ferent methods. The models are evaluated on the downstream
tasks of digit classification and background object classifica-
tion.

METRIC
DIGIT CLS
ACC. (%)

BKGD CLS
ACC. (%)

FIXED
FEATURE

EXTRACTOR

Inpainting 84.7 35.0
Colorization 80.7 38.4
Autoencoder 81.0 32.9

PrCL (ours) 88.3 46.5
IMPROVEMENT +3.2 +8.1

FINE-
TUNING

Inpainting 92.9 54.5
Colorization 92.5 54.5
Autoencoder 92.4 54.1

PrCL (ours) 93.3 54.7
IMPROVEMENT +0.4 +0.2

Table 7. Performance of PrCL on Colorful-Moving-MNIST with
and without warm-up training.

Colorful-Moving-MNIST

Warm-up Training
DIGIT CLS
ACC. (%)

BKGD CLS
ACC. (%)

No 24.9 47.8
Yes 88.3 46.5

contrastive learning baselines and cannot learn good features
related to digit classification. This indicates that without

the warm-up phase, the contrastive loss can dominate the
network causing it to suppress feature at the beginning, and
that the network cannot later jump out of the local minimum
that suppress feature. On the other hand, with warm-up train-
ing, the network first learns a coarse representation; then the
contrastive loss helps the network learn more fine-grained
representations.

IV. Performance of PrCL with different λ: In PrCL,
the combined loss is a weighted average of the prediction
loss and the contrastive loss, i.e., L = Lc + λ · Lp. In the
experiments of main paper, λ is set to 10. In this section, we



Table 8. Performance on Colorful-MNIST with progressive removal of data augmentations for different self-supervised learning techniques.
The baseline corresponds to the original set of augmentations used in SimCLR and MoCo: random flip, random resized crop, color distortion,
and random Gaussian blur.

(a) Experiments on Colorful-MNIST with progressive augmentation removal for Digit classification.

Method SimCLR MoCo BYOL PrCL(ours) IMPROVE
METRIC TOP-1 DROP TOP-1 DROP TOP-1 DROP TOP-1 DROP

Baseline 14.9 / 15.7 / 15.5 / 88.3 / +72.6

Remove flip 14.7 -0.2 15.4 -0.3 15.4 -0.1 88.1 -0.2 +72.7
Remove blur 14.5 -0.4 15.0 -0.7 15.1 -0.4 88.1 -0.2 +73.0
Crop color only 13.5 -1.4 14.4 -1.3 13.9 -1.6 87.9 -0.4 +73.5
Remove color distort 12.4 -2.5 13.1 -2.6 12.8 -2.7 86.9 -1.4 +73.8
Crop blur only 12.1 -2.8 12.8 -2.9 12.5 -3.0 86.8 -1.5 +74.0
Crop flip only 12.0 -2.9 12.7 -3.0 12.3 -3.2 86.7 -1.6 +74.0
Crop only 11.8 -3.1 12.4 -3.3 12.1 -3.4 86.5 -1.8 +74.1

(b) Experiments on Colorful-MNIST with progressive augmentation removal for Background classification.

Method SimCLR MoCO BYOL PrCL(ours) IMPROVE
METRIC TOP-1 DROP TOP-1 DROP TOP-1 DROP TOP-1 DROP

Baseline 47.3 / 48.5 / 49.0 / 46.5 / -2.5

Remove flip 46.8 -0.5 47.5 -1.0 47.7 -1.3 46.4 -0.1 -1.3
Remove blur 45.3 -2.0 46.8 -1.7 47.1 -1.9 46.3 -0.2 -0.8
Crop color only 44.7 -2.6 46.1 -2.4 46.0 -3.0 46.2 -0.3 +0.1
Remove color distort 43.2 -4.1 45.5 -3.0 45.6 -3.4 46.0 -0.5 +0.4
Crop blur only 42.3 -5.0 45.3 -3.2 45.2 -3.8 45.7 -0.8 +0.4
Crop flip only 41.9 -5.4 44.4 -4.1 44.9 -4.1 45.7 -0.8 +0.8
Crop only 41.5 -5.8 44.1 -4.4 44.4 -4.6 45.5 -1.0 +1.1

Table 9. Performance comparison on ImageNet classification be-
tween PrCL and ConRec[4] with progressive removal of data aug-
mentations.

Method ConRec[4] PrCL(ours) IMPROVE

Baseline 64.3 71.0 +6.7

Remove flip 64.1 70.8 +6.7
Remove blur 63.8 70.6 +6.8
Crop color only 63.5 70.1 +6.6
Remove color distort 58.7 65.9 +7.2
Crop blur only 56.4 65.1 +8.7
Crop flip only 55.2 64.6 +9.4
Crop only 54.9 64.1 +9.2

investigate how different λ affects the performance of PrCL.
Note that when λ = 0, PrCL degenerates to contrastive
learning; when λ → ∞, PrCL degenerates to predictive
learning.

Table 3 compares the performance of PrCL with differ-
ent λ. As we can see from the results, when λ < 100, with
larger λ, the accuracy of the digit classification increases,
while the accuracy of background classification decreases.
Moreover, the λ values between 10 and 100 gives quite simi-
lar performances, indicating a balancing between contrastive
loss and prediction loss. For λ > 100, the prediction loss

dominates the contrastive loss and harm the performance.
Therefore, we fix λ = 10 for all experiments.

V. Predictive Learning vs. PrCL: In the main paper, we
mainly compare PrCL with contrastive learning since con-
trastive learning is the current unsupervised learning SOTA
on ImageNet and outperforms predictive learning by a large
margin [2, 5]. Here, we also compare PrCL with predictive
learning, such as inpainting, colorization and autoencoder,
on various datasets to demonstrate the effectiveness of the
contrastive branch of PrCL. Tables [4-6] compare PrCL with
Inpainting [7], Colorization [9] and Auto-encoder on the
RGB datasets. The results demonstrate that PrCL outper-
forms all predictive learning baselines by a large margin.
This is because the contrastive branch in PrCL can signifi-
cantly improve the quality of the learned representation so it
can achieve much better performance on downstream tasks.

VI. Augmentation on Multi-attribute classification In
Table 8 we show the performance on multi-attribute classifi-
cation tasks (on Colorful-MNIST dataset) with progressive
removal of data augmentations for different self-supervised
learning techniques. From the results we can for tradi-
tional contrastive learning methods, the performance for
background classification drops a lot as less data augmenta-
tions are applied, and the performance for digit classification



remains near random no matter what data augmentation
techniques are applied. On the contrary the performance
for both digit classification and background classification
remain almost the same for PrCL when less data augmenta-
tion techniques are applied. This is because the additional
predictive loss in PrCL could prevent feature suppression.

VII. Comparison with ConRec[4]. In Table 9 we com-
pare our PrCL with ConRec[4] on ImageNet dataset. For
ConRec results, we directly reuse the open-source code and
keep their training scheme and hyper-parameters. From the
results we can see our PrCL outperforms ConRec[4] under
every circumstance by a large margin.

Appendix B: Additional Proofs

Here we formally prove Lemma 2.

Lemma 2 (Gradient Equivariance). The gradient of the
empirical infoNCE asymptotics is equivariant under the
lifting operation. Formally, consider any lifting operator
Tσ from the dimension d1 to the dimension d2. We have

∇z̃kElimNCE(Tσ(Z);X, t, d2) = Tσ (∇zkElimNCE(Z;X, t, d1))

Proof.
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Since Tσ is a linear operator,
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where z̃k = Tσ(zk). The second equal-
ity comes from the fact that ∀zi, zj , z⊤i zj =
Tσ(zi)⊤Tσ(zj). Thus ∇z̃kElimNCE(Tσ(Z);X, t, d2)
equals Tσ (∇zkElimNCE(Z;X, t, d1)), for all zk ∈ Z.

Appendix C: Implementation Details
In this section, we provide the implementation details

of the models used in our experiments. All experiments
are performed on 8 NVIDIA Titan X Pascal GPUs. On
ImageNet, training takes ∼100 hours. On each dataset, we
fix the batch size and training epochs for different baselines
for a fair comparison. Other parameters for each baseline
follow the original paper to optimize for its best performance.
Code will also be released upon acceptance of the paper.

ImageNet: We use a standard ResNet-50 for the encoder
network. The decoder network is a 11-layer deconvolutional
network. The projection head for contrastive learning is a
2-layer non-linear head which embeds the feature into a 128-
dimensional unit sphere. The same network structure is used
for all baselines and PrCL.

We follow the open repo of [3] for the implementation
of MoCo baselines and PrCL on ImageNet. For results on
SimCLR, we follow the results reported in [5]. All baselines
and PrCL is trained for 800 epochs with a batch size of
256. For the predictive branch of PrCL and the predictive
baseline, we mask out 3 to 5 rectangles at random locations
in the image. The size of each square is chosen by setting its
side randomly between 40 and 80 pixels. For the contrastive
branch of PrCL, we apply the same training scheme as MoCo.
The first 10 epochs are warm-up epochs, where we only train
the network with the prediction loss Lp. For later training,
we set λ = 10. For other RGB datasets, we mainly follows
similar implementation as ImageNet.

MPII: We use the network structure similar to the one in
[8]. We use a ResNet-50 for the encoder network. Three de-
convolutional layers with kernel size 4 and one convolutional



layer with kernel size 1 is added on top of the encoded fea-
ture to transfer the feature into 13 heatmaps corresponding
to 13 keypoints. For the contrastive branch, a 2-layer non-
linear projection head is added on top of the encoded feature
and embeds the feature into a 128-dimensional unit sphere.
For the predictive branch, a decoder network similar to the
pose estimation deconvolution network (only the number of
output channels is changed to 3) is used to reconstruct the
original image. Other implementation details are the same
as ImageNet.

For the baselines and PrCL, we train the network for 300
epochs with a batch size of 256. The data augmentation is
the same as the baseline augmentations on ImageNet. For
PrCL, the first 10 epochs are warm-up epochs, where we
only train the network with the prediction loss Lp.

FairFace: We use a standard ResNet-50 for the encoder
network. The decoder network is a 11-layer deconvolutional
network. The projection head for contrastive learning is a
2-layer non-linear head which embeds the feature into a 128-
dimensional unit sphere. The same network structure is used
for all baselines and PrCL.

For the baselines and PrCL, we train the network for 1000
epochs with a batch size of 256. The data augmentation is
the same as the baseline augmentations on ImageNet. For
PrCL, the first 30 epochs are warm-up epochs, where we
only train the network with the prediction loss Lp.

Colorful-Moving-MNIST: We use a 6-layer ConvNet
for the encoder. The encoder weights for the predictive
and contrastive branches are shared. The decoder is a 6-
layer deconvolutional network symmetric to the encoder.
The projection head for contrastive learning is a 2-layer
non-linear head which embeds the feature into a 64-dim
normalized space.

We use the SGD optimizer with 0.1 learning rate, 1e-4
weight decay, and 0.9 momentum to train the model for
200 epochs. The learning rate is scaled with a factor of 0.1
at epoch 150 and 175. The batch size is set to 512. The
temperature for contrastive loss is set to 0.1. For PrCL, the
first 30 epochs are warm-up epochs, where we only train the
network with the prediction loss Lp.

For PrCL, for each input image after augmentation with
a size of 64 by 64 pixels, we randomly mask out 3 to 5
rectangle patches at random locations in the image and fill
them with the average pixel value of the dataset. The size of
each square is chosen by setting its side randomly between
10 and 16 pixels.

Appendix D: Evaluation Metrics
For ImageNet, FairFace and Colorful-Moving-MNIST,

the evaluation metrics are the standard Top-1 classification
accuracy. For MPII, we evaluate the learned representations
under the single pose estimation setting [1]. Each person is

cropped using the approximate location and scale provided
by the dataset. Similar to prior works, we report the PCKh
(Percentage of Correct Keypoints that uses the matching
threshold as 50% of the head segment length) value of each
keypoint and an overall weighted averaged PCKh over all
keypoints (head, shoulder, elbow, wrist, hip, knee, ankle).
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