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This supplementary material to the main paper is struc-
tured as follows:

• In Appendix S.1 Masked Noise Encoder, we include an
ablation study on noise masking, and noise map reso-
lution. More qualitative results of the encoder com-
parison are provided to supplement Fig. 2 in the main
text. Additionally, we provide information regarding
the computational complexity.

• In Appendix S.2 Domain Generalization, we present a
detailed quantitative comparison with other data aug-
mentation techniques, as well as visual results of the
semantic segmentation. ISSA improves the model’s
generalization performance, supporting the results of
Table 3 in the main paper. We also demonstrate the
plug-n-play ability of ISSA.

• In Appendix S.3 Comparison with Unsupervised Do-
main Adaptation Methods, we show that ISSA is com-
petitive with unsupervised domain adaptation meth-
ods, even though it does not have access to the target
domain data.

• In Appendix S.4 Limitations and Future Work, we pro-
vide the discussion on the limitations and future direc-
tions of the proposed method.

S.1. Masked Noise Encoder

Ablation on noise random masking. We conduct an ab-
lation study on the mask patch size P and masking ratio ρ,
shown in Table S.1. We observe that the patch size P = 4
with a masking ratio ρ = 25% achieves the best reconstruc-
tion performance. Therefore, we use the encoder trained
with this parameter combination for our data augmentation
ISSA.

Ablation on the noise map resolution. We investigate the
effect of noise map size and experimentally observed that
the reconstruction quality benefits the most from using the
noise map at the intermediate feature space with one fourth

Patch size Ratio MSE ↓ LPIPS ↓ FID ↓

2
25% 0.005 0.090 1.50
50% 0.008 0.127 2.02

4
25% 0.004 0.089 1.41
50% 0.009 0.129 2.01

Table S.1. Ablation on the mask patch size and masking ratio. The
influence of patch size is minor on the reconstruction, while mask-
ing ratio is more important, i.e., higher masking ratio has negative
impact.

Noise scale MSE ↓ LPIPS ↓ FID ↓
4× 8 ∼ 8× 16 0.041 0.317 14.90
32× 64 0.008 0.101 2.30

Table S.2. Effect of noise map resolution on reconstruction quality.
Experiments are done on Cityscapes, 128× 256 resolution.

of the input resolution. As shown in Table S.2, using 32×64
noise, i.e., one fourth of the image resolution, achieves bet-
ter reconstruction quality than using lower resolution noise
maps. Higher resolution noise map, e.g., full image reso-
lution, in contrast, can be too expressive and encode nearly
all perceivable details. This results in worse style mixing
capability, as shown in Fig. S.1. Therefore, we employ the
intermediate noise map at one fourth of the input resolution
in all of our experiments.

Additional qualitative results. In Fig. S.2 we provide
more visual results of the comparison among pSp [8], pSp†,
feature-style encoder [17] and our masked noise encoder.
Note that, pSp† is an improved version obtained by us,
which is trained with an additional discriminator and syn-
thesized images for better initialization. It is evident that
our masked noise encoder is capable of preserving more fine
details and high-quality reconstruction, which is consistent
with the observation in Fig. 2 in the main text.

Computational complexity. We provide more details on
the time and memory usage required by using the masked
noise encoder. It takes around 7 days to train the masked
noise encoder on 256 × 512 resolution using 2 GPUs. A
similar amount of time is required for the StyleGAN2 train-
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Figure S.1. Influence of the noise map resolution on style-mixing ability. Using higher resolution noise map, e.g, H × W , leads to poor
style-mixing ability. While too low resolution, e.g., H
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, cannot reconstruct the scene faithfully.
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Figure S.2. Qualitative comparison between our masked noise encoder and other StyleGAN2 inversion encoders on Cityscapes (best view
in color and zoom in). Note, pSp† is obtained by us, training pSp with an additional discriminator and incorporate synthesized images
for better initialization. Evidently, our masked noise encoder achieves the highest fidelity and successfully reconstruct small objects such
pedestrians and traffic signs. This is consistent with the observation in Fig. 2 of the main text.

ing. Nonetheless, for data augmentation, it only concerns
the inference time of our encoder, which is much faster,
i.e., 0.1 seconds, compared to optimization based methods
such as PTI [9] that takes 55.7 seconds per image. Fur-
thermore, stylized images by ISSA can be pre-generated
and pre-stored instead of being generated on-the-fly for data
augmentation, reducing the memory usage during the se-
mantic segmentation network training.

S.2. Domain Generalization

Comparison with data augmentation methods. Table S.3
provides the full comparison on Cityscapes to ACDC do-

main generalization between ISSA and other data aug-
mentation methods, e.g., CutMix [18], Hendrycks corrup-
tions [2] and StyleMix [3]. Two semantic segmentation
models HRNet [13] and SegFormer [15] are used. We re-
port more generalization results on BDD100K and Dark
Zürich in Table S.4. Supporting results in Table 3 of the
main paper, ISSA has shown consistent improvements on
models’ generalization capability across datasets and net-
work architectures. We also observe that, among differ-
ent Hendrycks corruption types, noise and blur corrup-
tions have larger negative impact on the performance, while
weather and digital corruptions can offer little help on the
generalization performance.



HRNet [13] SegFormer [15]
Method CS Rain Fog Snow Night Avg. CS Rain Fog Snow Night Avg.

Baseline 70.47 44.15 58.68 44.20 18.90 41.48 67.90 50.22 60.52 48.86 28.56 47.04

CutMix [18] 72.68 42.48 58.63 44.50 17.07 40.67 69.23 49.53 61.58 47.42 27.77 46.57
Weather [2] 69.25 50.78 60.82 38.34 22.82 43.19 67.41 54.02 64.74 49.57 28.50 49.21
Noise [2] 65.78 42.45 54.60 41.64 16.31 38.75 65.89 53.15 63.88 46.63 27.66 47.83
Digital [2] 69.13 50.13 65.71 49.22 24.81 47.47 67.57 55.53 66.46 49.92 30.33 50.56
Blur [2] 65.95 44.05 51.22 40.19 16.83 38.07 66.15 51.17 61.57 45.71 27.49 46.48
Common [2] 68.68 52.00 62.33 43.42 21.78 44.88 67.26 55.63 66.78 48.50 32.63 50.89
StyleMix [3] 57.40 40.59 49.11 39.14 19.34 37.04 65.30 53.54 63.86 49.98 28.93 49.08
ISSA (Ours) 70.30 50.62 66.09 53.30 30.18 50.05 67.52 55.91 67.46 53.19 33.23 52.45

ISSA+CutMix 72.37 53.42 68.88 53.82 30.10 51.55 68.43 55.85 68.70 52.98 33.82 52.84

Oracle 70.29 65.67 75.22 72.34 50.39 65.90 68.24 63.67 74.10 67.97 48.79 63.56

Table S.3. Comparison of data augmentation for improving domain generalization, i.e., from Cityscapes (train) to ACDC (unseen). The
mean Intersection over Union (mIoU) is reported on Cityscapes (CS), four individual scenarios of ACDC (Rain, Fog, Snow and Night)
and the whole ACDC (Avg.). Oracle indicates the supervised training on both Cityscapes and ACDC, serving as an mIoU upper bound
on ACDC for the other methods. Note, it is not supposed to be an upper bound on Cityscapes. ISSA performs the best on ACDC using
both HRNet and SegFormer, consistently improving the mIoU in all four scenarios of ACDC. This table complements Table 3 of the main
paper with additional types of Hendrycks’ corruption types, i.e., noise, digital and blur. Additionally, we combine ISSA with CutMix to
diversify both styles and content of the training samples, where CutMix brings performance gain on the source domain.

HRNet [13] SegFormer [15]
Method CS ACDC BDD100K Dark Zürich CS ACDC BDD100K Dark Zürich

Baseline 70.47 41.48 45.66 15.50 67.90 47.04 49.35 24.20

CutMix [18] 72.68 40.67 45.57 15.34 69.23 46.57 48.93 22.98
Weather [2] 69.25 43.19 44.53 18.71 67.41 49.21 49.84 23.44
Noise [2] 65.78 38.75 44.13 12.40 65.89 47.83 49.55 22.50
Digital [2] 69.13 47.47 47.60 22.32 67.57 50.56 51.11 25.11
Blur [2] 65.95 38.07 37.16 15.05 66.15 46.48 48.89 22.82
Common [2] 68.68 44.88 46.31 18.30 67.26 50.89 51.53 27.11
StyleMix [3] 57.40 37.04 39.30 15.85 65.30 49.08 50.49 23.50
ISSA (Ours) 70.30 50.05 50.29 27.24 67.52 52.45 51.92 27.39

ISSA+CutMix 72.37 51.55 50.06 26.24 68.43 52.84 51.89 28.29

Table S.4. Comparison of data augmentation for improving domain generalization, i.e., from Cityscapes (train) to ACDC, BDD100K and
Dark Zürich (unseen). The mean Intersection over Union (mIoU) is reported. This table supplements the results in Table 3 of the main
paper. ISSA consistently outperforms the other data augmentation techniques across different datasets and network architectures. We
additionally combine ISSA with CutMix to diversify both styles and content of the training samples, where CutMix brings performance
gain on the source domain.

Besides, we consider BDD100K-Daytime as the source
domain, ACDC and Dark Zürich as the unseen target do-
mains. We report the quantitative results in Table S.5. As
BDD100K already covers different times of day and di-
verse weather conditions, we only use a subset, i.e., 2526
daytime images of BDD100K for training, to allow for a
more representative domain generalization evaluation. In
this case, we specifically report ACDC-Night performance,
since only nighttime images are not included in the train-
ing set. ISSA still outperforms the other data augmentation
methods on unseen domains, being coherent with the other
experimental results.

Qualitative results of ISSA. We present visual examples

of our ISSA in Fig. S.4. Images in each row have the
same content with random styles extracted from the source
domain, i.e., Cityscapes for the 1st row and BDD100K-
Daytime for the remaining rows. Besides, some qualita-
tive semantics segmentation results on Cityscapes to ACDC
generalization are demonstrated in Fig. S.5.

Plug-n-play ability. Training GAN and encoder could take
considerable computational resources, therefore we insti-
gate the plug-n-play ability of our pipeline. We observe that
ISSA can still be effective even when encoder and genera-
tor are trained on a different dataset of a similar task, and
re-training is not required. As shown in Table S.6, when
training the segmenter on Cityscapes using ISSA, we can



Method BDD100K ACDC-Night DarkZürich

Baseline [13] 52.97 23.52 23.63

CutMix [18] 54.03 24.37 23.99
Weather [2] 52.10 23.79 24.21
Noise [2] 49.25 19.69 19.31
Blur [2] 50.92 20.68 20.08
Digital [2] 52.10 24.17 23.24
Common [2] 51.34 23.76 23.62
StyleMix [3] 46.33 19.13 19.27
ISSA(Ours) 53.37 25.93 26.55

Table S.5. Comparison of data augmentation techniques for
improving domain generalization using HRNet [13], i.e.,
from BDD100K-Daytime to ACDC-Night and Dark Zürich.
BDD100K-Daytime is a subset of BDD100K, which contains
2526 images in daytime under various weather conditions, but not
in dawn/nighttime. Here, we evaluate the domain generalization
with respect to day to night.

Method CS Rain Fog Snow Night Avg.
Baseline 70.5 44.2 58.7 44.2 18.9 41.5
ISSA: CS-G-E 70.3 50.6 66.1 53.3 30.2 50.1
ISSA: BDD-G-E 70.3 52.2 66.3 52.2 31.0 50.4

Table S.6. Comparison on Cityscapes to ACDC generalization us-
ing ISSA with generator and encoder trained on Cityscapes (CS-
G-E) and BDD100K (BDD-G-E), respectively. Despite never see-
ing Cityscapes samples, ISSA with BDD-G-E is still highly effec-
tive.

Method Network Use Target mIoU

Baseline

DeepLabv2 [1]

— 30.9

BDL [5] ✓ 32.7
CRST [20] ✓ 32.8
AdaptSegNet [11] ✓ 33.4
SIM [14] ✓ 34.6
MRNet [19] ✓ 36.1
ADVENT [12] ✓ 37.7
CLAN [6] ✓ 39.0
FDA [16] ✓ 45.7
ISSA(Ours) ✗ 43.2

DAFormer [4] DAFormer [4] ✓ 55.4
ISSA(Ours) SegFormer [15] ✗ 52.5

Table S.7. Quantitative comparison on Cityscapes → ACDC with
UDA methods. Remarkably, our domain generalization method
(without access to the target domain, neither images nor labels),
is on-par or better than unsupervised domain adaptation (UDA)
methods, which requires knowledge of the target domain during
training. Results of UDA methods are from [10].

directly use generator and encoder trained on BDD100K
without fine-tuning. The effectiveness of ISSA is not com-
promised even though the model has never seen Cityscapes
samples. Visual examples in Fig. S.3 show the plug-n-play
style-mixing ability of our encoder on web-crawled images,
where the model is only trained on Cityscapes.

Content Style Mixed

Figure S.3. Style-mixing using web-crawled images, where the
generator and encoder are only trained on Cityscapes. Except
for the content images of the first 2 rows, all the others are web-
crawled images.

S.3. Comparison with Unsupervised Domain
Adaptation Methods

We compare our method with multiple unsupervised do-
main adaptation (UDA) techniques, which not only have
access to the source domain, but also use extra unlabeled
samples of the target domain. The quantitative comparison
of Cityscapes to ACDC adaptation/generalization is shown
in Table S.7. Our method has presented competitive perfor-
mance, even without using images from the target domain.

S.4. Limitations and Future Work
One limitation of ISSA is that our style mixing is a

global transformation, which cannot specifically alter the
style of local objects, e.g., adjusting vehicle color from red
to black, though when changing the image globally, local
areas are inevitably modified. In the future, it is challeng-
ing yet interesting to extend our work with class-aware style
mixing. Also, by exploiting the pre-trained language-vision
model such as CLIP [7], we can synthesize styles condi-
tioned on text rather than an image. For instance, by provid-
ing a text condition “snowy road”, ideally we would want to
obtain an image where there is snow on the road and other
semantic classes remain unchanged.



Figure S.4. Examples of augmented images by our intra-source style augmentation (ISSA). Each row presents randomly stylized samples
of the same content using ISSA, where both content and styles come from the source domain only, i.e., Cityscapes for the 1st row and
BDD100K-Daytime for the remaining rows.



Image Ground truth Baseline Ours

Figure S.5. Semantic segmentation results of Cityscapes → ACDC generalization using HRNet. The HRNet is trained on Cityscapes only.
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