Supplementary Material: Jointly Learning Band Selection and Filter Array Design for Hyperspectral Imaging

Ke Li1 Dengxin Dai2 Luc Van Gool1,3
1CVL, ETH Zurich, 2MPI for Informatics, 3PSI, KU Leuven
\{ke.li,vangool\}@vision.ee.ethz.ch, ddai@mpi-inf.mpg.de

1. Network Architectures

As discussed in our main paper, our sparse demosaic-ing network consists of a sequence of four Sparse Residual Blocks. The architecture of the Sparse Residual Block is shown in Fig. \ref{fig:sparse_res_block} which consists of three branches with different depth. The residual design helps pass through information from the input to the output.

The network architecture of our spectral recovery network is shown in Fig. \ref{fig:spectral_recovery_network}. The design is inspired by the recent work SSPN \cite{jiang2020learning} which was developed to learn interactions between spectral bands of hyperspectral images.

2. MS Filters

We provide the detailed data of the 12 filters that are used to generate the input image, \textit{i.e.} the measurement image \(X\), for our method. Please see the data in Fig. \ref{fig:ms_filters}.

3. Visual Results

We show more visual results of our method and comparison methods in Fig. \ref{fig:visual_results}. The visual results again show that our method outperforms other methods and generate better results in terms of both spatial resolution and spectral (color) accuracy. As discussed in the main paper, this is mainly due to the flexibility of our joint optimization method that can strike a good balance between spatial and spectral resolution for the input spectral bands.

References

\begin{itemize}
\end{itemize}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{sparse_res_block.png}
\caption{The architecture of our Sparse Residual Block, where each SparseConv2D is a Minkowski 2D Convolution.}
\end{figure}
Figure 2: The architecture of our spectral recovery network.
Figure 3: The responses functions of the 12 MS filters that are used by our method.
Figure 4: Visual Results of our methods and baseline methods. We choose spectral band 5, 15, and 25 out of the 31 bands and use them as the R, G, and B channel of a color image for this visualization. Better to see on a screen.