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Category: Pets &Animals
Search Query: Pet
Title: 40 Biggest and Most Unique Pets People Actually Own
Description: Some people like to have pets that they can put in their bags. However,
some like pets that can easily overpower them. Take the family that took in a giant hippo,
for example! Or even the family with a Dane as tall as 3 feet! …

Category: Sport
Search Query:Winter Sport
Title: 20 FUNNYMOMENTS IN WINTER SPORTS
Description: 20 FUNNYMOMENTS IN WINTER SPORTS

Figure 1. Two examples from the YTVT dataset. Five sampled
frames and the text information of the video are presented. The
text information of the video includes category, search query, title,
and description.

1. More Examples from YTVY
Figure 1 shows more video examples from the proposed

YTVY. As we can see from the examples, the videos from
YTVY involve various topics such as Pets & Animals and
Sport. For each video, we provide the text information in-
cluding topic, search query, title, and description. Note
that the presented text information is directly obtained from
YouTube without pre-processing.

2. Residual Connection in Progressive Video
Summarization

In the proposed progressive video summarization, the in-
put of the n-th stage is computed as the weighted enhance-
ment of the input of the previous stage based on the output
of the previous stage, i.e.,

F n = F n−1 ∗ sn−1 + F n−1, (1)

where we add the input of the previous stage to the weighted
features as residual connection. Intuitively, the input of the

Table 1. Comparison between the models with or without residual
connection (ResCc).

#Stages ResCc SumMe TVSum
τ ρ τ ρ

2 ✗ 0.104 0.138 0.135 0.178
✓ 0.140 0.189 0.159 0.209

3 ✗ 0.096 0.128 0.142 0.187
✓ 0.166 0.224 0.162 0.212

4 ✗ 0.105 0.140 0.150 0.197
✓ 0.145 0.198 0.163 0.214

next stage can also be defined as the weighted features along
(without residual connection) as follows,

F n = F n−1 ∗ sn−1. (2)

We conduct experiments to show the performance of these
to formations of input in this part. The comparisons are
shown in Table 1. Since we focus on the impact on the
progressive mechanism, the self-supervised pretraining and
the text information are not applied. As we can see from
the results, the residual connection is of great importance to
the performance of our progressive video summarization.
Specifically, the impact of residual connection on SumMe
is greater than that on TVSum. We believe the reason is
that residual connection stabilize the training process on
SumMe which consists of less training samples.

3. Different Score Prediction Manners

In this experiment, we show the impact of different score
prediction manners on the performance. Three manners are
tested: 1) using only the scores output by the last stage as
the final scores (Last); 2) using the average of the scores
output by all stages (Avg.); 3) using their step-wise multi-
plication as the final scores (Mul.). The formulations of the
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Figure 2. Visualization of the ground truth importance scores and the predicted ones by SSPVS and SSPVS+Text on TVSum. The green
lines depict the ground truth scores, while the blue/red lines depict the predicted ones by SSPVS/SSPVS+Text.

Table 2. Comparison between different score prediction manners.

#Stages Manners SumMe TVSum
τ ρ τ ρ

2
Last 0.107 0.144 0.152 0.204
Avg. 0.091 0.121 0.153 0.202
Mul. 0.140 0.189 0.159 0.209

3
Last 0.069 0.091 0.161 0.214
Avg. 0.077 0.103 0.162 0.212
Mul. 0.166 0.224 0.162 0.212

4
Last 0.042 0.058 0.161 0.212
Avg. 0.079 0.105 0.160 0.211
Mul. 0.145 0.198 0.163 0.214

three manners are expressed respectively as follows:

Last: s∗ = sN , (3)

Avg.: s∗ =
1

N

N∑
n=1

sn, (4)

Mul.: s∗ = s1 ⊙ s2 ⊙ · · · ⊙ sN , (5)

The comparison results of the three score prediction man-
ners are shown in Table 2. Similar to Section 2, the self-
supervised pretraining and the text information are not ap-
plied. As shown in Table 2, on TVSum, different score pre-
diction manners make little difference on the performance.
However on SumMe, the score computed by multiplication
outperforms other manners significantly. We assume the
reason is that the multiplication makes the predicted score
more discrimative for each frame. Considering the results
on both datasets, we choose to use the multiplication of
scores from all stages as the final score in our method.

4. Progressive Video Summarization with Text
information

In this section, we show the impact of different manners
of applying text information to progressive video summa-
rization. We propose three manners: 1) add the text encod-

ing in all stages (All); 2) add the text encoding only in the
first stage (First); 3) add the text encoding only in the last
stage (Last). The results of different manners are shown in
Table 3. As we can see from the results, the three man-
ners have different performance on SumMe. Specifically,
when the text information is added in all stages or only the
last stage, the results drop significantly. As for TVSum, the
performance of three manners are similar, and adding the
text information in the first stage gains slightly better re-
sults. Considering the results on two datasets, we assume
the reason is that there exists a large domain gap between
the encoded frames and encoded words in high stages, as we
apply residual connection to the inputs before every stage.
Hence, we only add the text information in the first stage.

5. Different Self-supervised Modeling
Our self-supervised framework consists of three loss

functions to model coarse-grained multimodal correlations
(L1), fine-grained multimodal correlations (L2), and tem-
poral dependencies in videos (L3), respectively. Table 4
shows the results of the models pretrained by individual
self-supervised loss functions. As the results show, each
self-supervised model gains improvements for video sum-
marization compared to the baseline model. Specifically, on
SumMe, the temporal dependency modeling has the great-
est impact, while on TVSum, the pretrained models obtain
similar performance. By combining the three modeling for
self-supervised learning, the pretrained model achieves the
best results for video summarization on both datasets.

6. Impact of the Amount of Data for Self-
supervised Pretraining

In this part, we show the impact of the amount of YTVT
data for self-supervised pretraining on video summariza-
tion. Specifically, we randomly sample 1

3 and 2
3 of the

videos from YTVT respectively for pretraining. We then
fine-tune the two pretrained models on video summariza-
tion. The results are shown in Table 5. As we can see from
the results, when we use 1

3 of YTVT for pretraining, the



Table 3. Comparison of different manners of applying text infor-
mation to video summarization.

#Stages Manners SumMe TVSum
τ ρ τ ρ

2
All 0.115 0.155 0.162 0.212

First 0.174 0.235 0.163 0.214
Last 0.088 0.116 0.161 0.210

3
All 0.126 0.171 0.171 0.227

First 0.192 0.257 0.173 0.228
Last 0.101 0.136 0.170 0.226

4
All 0.117 0.158 0.176 0.231

First 0.175 0.237 0.181 0.238
Last 0.096 0.130 0.174 0.229

Table 4. The results (Kendall’s τ and Spearman’s ρ) of different
self-supervised loss functions.

Loss SumMe TVSum
τ ρ τ ρ

Baseline 0.137 0.187 0.141 0.185
Coarse-grained (L1) 0.147 0.196 0.149 0.196
Fine-grained (L2) 0.142 0.195 0.147 0.193
Temporal (L3) 0.149 0.201 0.147 0.194
SSPVS 0.154 0.207 0.151 0.199

Table 5. Impact of the percentage of YTVT used for pretraining.

Proportion SumMe TVSum
τ ρ τ ρ

Baseline 0.137 0.187 0.141 0.185
33.3% 0.145 0.195 0.146 0.194
66.6% 0.152 0.203 0.149 0.198
100% 0.154 0.207 0.151 0.199

performance is improved considerably compared with the
model without pretraining. As for the model pretrained with
2
3 of YTVT, the improvements are even greater, but the re-
sults are close to those of whole YTVT. We believe that the
capacity of the video encoder is the bottleneck and increase
the model complexity could bring more improvement.

7. Impact of Different Types of Text Informa-
tion

In this section, we show the impact of different types of
information on video summarization. Since search query
and title are available for all videos in TVSum, we conduct
ablation studies on them for TVSum. The baseline model
is pretrained on YTVT but no text information is used for
video summarization. The results are shown in Table 6. As
we can see from the results, search query outperforms title
for video summarization on TVSum. We believe the rea-
son is that search query provides more high-level semantic

Table 6. Impact of different types of text information.
Baseline Query Title All

τ 0.151 0.156 0.153 0.157
ρ 0.199 0.205 0.202 0.206

Table 7. Comparisons of number of parameters and runtime of dif-
ferent video summarization models.

Models #Param. (M) Runtime (s)
Bi-LSTM 50.4 3.45
Transformer 75.6 0.83
SSPVS(1)

37.8
0.66

SSPVS(2) 0.93
SSPVS(3) 1.19
SSPVS+Text(1)

148.7
1.86

SSPVS+Text(2) 2.16
SSPVS+Text(3) 2.41

guidance which is of great importance to finding the most
meaningful shots in videos.

8. Computational Complexity Analysis
In this section, we conduct computational complexity

analysis on various summarization models, including Bi-
LSTM (with 2048D hidden state), the standard Transformer
(with six layers), and our models with 1, 2, and 3 stages.
The number of parameters and runtime of each model are
shown in Table 7. Note that the runtime is measured by
processing 100 videos of 200 frames, and the number of
words in the text information is fixed to 50. As we can
see from the results, our model has less parameters com-
pared to Bi-LSTM and the standard Transformer. Since all
stages share the same video encoder, the number of param-
eters is almost a constant with the increase in the number
of stages. After exploiting the text information, the size
of our model becomes much larger due to BERT. In terms
of runtime, Bi-LSTM costs much more time compared to
Transformer-based models. Besides, the time consumption
of our model of less than three stages is close to the standard
Transformer. Furthermore, with the text information, our
model costs more time but is still efficient than Bi-LSTM.
In summary, the computational cost of our methods is ac-
ceptable for real applications.

9. Visualization of Score Prediction
The predicted importance sores by SSPVS/SSPVS+Text

and the ground truth ones are visualized in Figure 2. The
four videos in the figure are from TVSum. As we can see
from the figure, the predicted curves fit the ground truth
ones well, which means the proposed methods can effec-
tively model the temporal dependencies and the relative im-
portance among frames. Specifically, SSPVS+Text (red)



shows higher accuracy than SSPVS (blue) in the prediction
of importance scores, which means the text information fur-
ther benefits the process of video summarization.

10. Limitations
Our framework follows the typical pipeline of self-

supervised learning: pretraining the video encoders and text
encoders on YTVT without human annotations, and then
fine-tune the encoders on the downstream video summariza-
tion with supervised learning. However, such a multi-stage
training strategy is complicated compared to most video
summarization methods. In the future work, we aims to
fine-tine only part of the encoders on video summarization,
or even directly apply the pretrained models to video sum-
marization without fine-tuning (i.e., zero-shot video sum-
marization), while maintaining the high performance, and
thus the whole process is greatly simplified.


