
Vision Transformer for NeRF-Based View
Synthesis from a Single Input Image

Supplementary Materials

1. Video Results

We include video results as a webpage (https:
//cseweb.ucsd.edu/˜viscomp/projects/
VisionNeRF/supplementary.html). In each
video, we compare the input, SRN [11], PixelNeRF [13],
ours and ground-truth. The renderings of SRN and Pix-
elNeRF are provided by the authors of PixelNeRF on
request.

2. Network Architecture

Transformer encoder. We adopt the pretrained ViT-b16
model from Wightman [12] as our transformer encoder. The
transformer encoder has 12 layers (J=12), where each layer
uses the LayerNorm [1] for normalization and GELU [4] for
activation. The positional embedding is resized to the same
size as the input image (e.g., 128 × 128 for the ShapeNet
dataset, and 64× 64 for the NMR dataset).

Convolutional decoder. We provide the architecture de-
tails of our convolutional decoder in Table 1. Our convo-
lutional decoder takes the tokens f3, f6, f9, and f12 [9]
as input and generate multi-level features W3

G,W6
G,W9

G,
W12

G , as shown in Fig. 4 of the main paper. We then resize
all feature maps WG to the size of H

2 ×
W
2 via bilinear inter-

polation. Finally, we adopt a two-layer CNN module (see
Table 2) to generate the global feature representation W′G.

2D CNN GL. We use the ResBlocks in Fig. 1 to generate
the local feature representation WL. The local feature WL

and global feature W′G are then concatenated as our hybrid
feature representation W.

NeRF MLP. We utilize the hierarchical rendering [8] to in-
clude detailed geometry and appearance. We use 6 ResNet
blocks with width 512 for both coarse and fine stages to
process the global and local features.

3x3, 1, 256

3x3, 1, 256

+

3x3, 1, 256

3x3, 1, 256

+

3x3, 1, 256

3x3, 1, 256

+

7x7, 2, 64
BN, ReLU

BN, ReLU

BN

ReLU

BN, ReLU

BN

ReLU

BN, ReLU

BN

ReLU

Figure 1. Illustration of the ResBlocks. We use three ResBlocks
as our 2D CNN module to extract local feature representation from
the input image. The numbers in each layer denote the kernel size,
stride, and output channels, respectively. BN denotes BatchNorm,
and ReLU is the nonlinear activation function.

0

1e-4

5e-5

500k400k300k200k100k10k 450k

1e-5

Figure 2. Illustration of the learning rate strategy for the MLP
module. We first linearly increase the learning rate to 1e − 4 for
the first 10k step. Then, we set a learning rate decay of scale 0.1
at 450k steps.

3. Implementation Details

Learning rate. We set the initial learning rate to be 10−4

for the MLP and 10−5 for ViT and the 2D CNN module.

https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html
https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html
https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html


#j layer kernel stride dilation in out activation input

3
Conv0-0 1× 1 1 1 768 96 N/A f3

TransConv0-1 4× 4 4 1 96 96 N/A Conv0-0
Conv0-2 3× 3 1 1 96 512 N/A TransConv0-1

6
Conv1-0 1× 1 1 1 768 192 N/A f6

TransConv1-1 2× 2 2 1 192 192 N/A Conv1-0
Conv1-2 3× 3 1 1 192 512 N/A TransConv1-1

9
Conv2-0 1× 1 1 1 768 384 N/A f9

Conv2-1 3× 3 1 1 384 512 N/A Conv2-0

12
Conv3-0 1× 1 1 1 768 768 N/A f12

Conv3-1 3× 3 2 1 768 768 N/A Conv3-0
Conv3-2 3× 3 1 1 768 512 N/A Conv3-1

Table 1. Architecture of the convolutional decoder. Conv denotes convolution layer. TransConv denotes transposed convolution
layer.

Layer kernel stride dilation in out activation input

Conv0 3× 3 1 1 1024 512 ReLU WG

Conv1 3× 3 1 1 512 256 ReLU conv0

Table 2. Architecture of the last two layers for generating
global feature representation W′

G.

To improve training stability, we use a warm-up schedule
to increase the learning rate linearly from 0 for the first 10k
steps. We decay the learning rate by a factor of 0.1 at 450k
steps. Our learning rate schedule for the NeRF MLP is plot-
ted in Fig. 2.

Inference speed. We ran 300 forward steps and averaged
them to obtain the per-step inference time. PixelNeRF takes
1.35s and ours takes 1.7s. Our method has slightly more
latency.

4. Experiment Configurations

We provide the detailed experiment setups in Sec. 4 of
the main paper.

4.1. Category-specific View Synthesis.

SRN [11] and PixelNeRF [13]: We obtain the PSNR and
SSIM from Table 2 in [13]. We use the pre-generated results
provided by the authors of [13] (on request) to calculate the
LPIPS score.

CodeNeRF [5]: We obtain the PSNR and SSIM of the un-
posed input from Table 2 in [5]. As the pre-generated results
are not available, and the source code of CodeNeRF does
not provide optimization stages for unposed inputs, we are
not able to calculate the LPIPS score.

FE-NVS [3]: We obtain the PSNR and SSIM of the un-
posed input from Table 1 in [3]. We obtain the LPIPS score
from the authors on request. As FE-NVS does not provide
source code to reproduce any qualitative results, we crop the

high-resolution images from their paper to show the com-
parison in Fig. 6 of the main paper.

Note that all the methods except CodeNeRF uses view 64
as input, while CodeNeRF uses view 82 as input for evalu-
ation in their paper. As the source code for CodeNeRF does
not include unposed inference, we are not able to generate
the full evaluation using view 64.

4.2. Category-agnostic View Synthesis

Similar to category-specific view synthesis, we obtain
the numbers of SRN [11] and PixelNeRF [13] from Table
4 of [13]. We obtain the numbers of FE-NVS [3] from Ta-
ble 4 of [3]. Qualitative results for SRN and PixelNeRF are
generated using the pre-generated results from [13]. The
detailed categorical numbers of SRT [10] and FWD [2] are
provided by their authors. For qualitative results, we obtain
the images from SRT project website and from the author
of FWD. Note that SRT does not provide the full renderings
of the dataset.

4.3. View Synthesis on Real Images

We use the real car images provided by PixelNeRF and
the Stanford Cars dataset [7] for evaluation. We remove
the background using the PointRend [6] segmentation and
resize the images to 128 × 128 resolution. We assume the
input camera pose is an identity matrix and apply rotation
matrices to simulate 360◦ views. We use the source code
and pre-trained model of PixelNeRF to generate the results
for PixelNeRF, where we synthesize the renderings at the
same camera poses.

5. Additional Results

5.1. Generalization on Unseen objects.

For unseen categories, we feed an image of a real mug
to the category-agnostic model as shown in Fig. 3. While
the training data do not include mugs, our method is able to
predict reasonable novel views.



(a) Input (b) View 1 (c) View 2

Figure 3. Results for unseen real data. We run our category-
agnostic model on a real image (a) and render two viewpoints from
the right (b) and left (c). Our method is able to predict a reasonable
geometry even though mugs are not presented in the training data.

5.2. Results on Category-specific and Category-
agnostic View Synthesis

We include extra results on category-specific view
synthesis in Fig. 4 and 5, results on category-agnostic
view synthesis in Fig. 6-12. Note that we choose
the target views where most pixels are not visible
in the input view to better compare the rendering
quality of each method on occluded regions. The
video results (in GIF format) are also provided on
website (https://cseweb.ucsd.edu/˜viscomp/
projects/VisionNeRF/supplementary.html).

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[2] Ang Cao, Chris Rockwell, and Justin Johnson. Fwd: Real-
time novel view synthesis with forward warping and depth.
CVPR, 2022.

[3] Pengsheng Guo, Miguel Angel Bautista, Alex Colburn,
Liang Yang, Daniel Ulbricht, Joshua M. Susskind, and Qi
Shan. Fast and explicit neural view synthesis. In WACV,
2022.

[4] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[5] Wonbong Jang and Lourdes Agapito. CodeNeRF: Disentan-
gled neural radiance fields for object categories. In ICCV,
2021.

[6] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. PointRend: Image segmentation as rendering. In
CVPR, 2020.

[7] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3D object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013.

[8] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020.

[9] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In ICCV, 2021.

[10] Mehdi S. M. Sajjadi, Henning Meyer, Etienne Pot, Urs
Bergmann, Klaus Greff, Noha Radwan, Suhani Vora,
Mario Lucic, Daniel Duckworth, Alexey Dosovitskiy, Jakob
Uszkoreit, Thomas Funkhouser, and Andrea Tagliasacchi.
Scene Representation Transformer: Geometry-Free Novel
View Synthesis Through Set-Latent Scene Representations.
CVPR, 2022.

[11] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3D-
structure-aware neural scene representations. In NeurIPS,
2019.

[12] Ross Wightman. Pytorch image mod-
els. https://github.com/rwightman/
pytorch-image-models, 2019.

[13] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021.

https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html
https://cseweb.ucsd.edu/~viscomp/projects/VisionNeRF/supplementary.html
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Input SRN PixelNeRF Ours GT

Figure 4. Category-specific view synthesis results on cars.



Input SRN PixelNeRF Ours GT

Figure 5. Category-specific view synthesis results on chairs.



Input SRN PixelNeRF Ours GT

Pl
an

e
B

en
ch

FWD

Figure 6. Category-agnostic view synthesis results on the NMR dataset.



C
ab

in
et

C
ar

Input SRN PixelNeRF Ours GTFWD

Figure 7. Category-agnostic view synthesis results on the NMR dataset.



C
ha

ir
D

is
pl

ay

Input SRN PixelNeRF Ours GTFWD
Figure 8. Category-agnostic view synthesis results on the NMR dataset.



La
m

p
Sp

ea
ke

r

Input SRN PixelNeRF Ours GTFWD

Figure 9. Category-agnostic view synthesis results on the NMR dataset.



R
ifl

e
So

fa

Input SRN PixelNeRF Ours GTFWD
Figure 10. Category-agnostic view synthesis results on the NMR dataset.



Ta
bl

e
Ph

on
e

Input SRN PixelNeRF Ours GTFWD

Figure 11. Category-agnostic view synthesis results on the NMR dataset.



B
oa

t

Input SRN PixelNeRF Ours GTFWD
Figure 12. Category-agnostic view synthesis results on the NMR dataset.


