
SUPPLEMENTARY MATERIAL
Lightweight Video Denoising using Aggregated Shifted Window Attention

1. Evaluation of Memory Consumption
To demonstrate the lightweight behaviour of our method

compared to the state-of-the art VRT [3], we evaluate the
peak memory consumption during inference. In detail, we
ran both models in inference mode for several runs using a
constant input frame number of 6, but increasing the spatial
image size. The maximum spatial image size was limited
by VRT. Figure 1 clearly demonstrates that our method re-
quires significantly less memory and thereby enables a more
effective processing of high-resolution videos.
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Figure 1: Evaluation of the memory consumption of VRT
and our method with increasing input image size.

2. Non-reference Video Quality Assessment
In this section, we provide more detailed results for the

non-reference image quality assessment (NR-IQA) we con-
ducted, using the MUSIQ [2] score metric. We show the
individual results achieved on each of the 10 real test videos
along with the mean value over all videos, see Table 1.
As can be seen our method performs best on 8 of the 10
videos, and second best on the remaining 2 videos. On av-
erage, our approach outperforms all other denoising meth-
ods. It is important to note that the MUSIQ network was
not trained on any data used in this work. We used the
pretrained model provided by the authors, trained on the

KonIQ-10k dataset [4], which is the largest IQA dataset of
quality-scored images.

noisy UDVD MF2F DarkEnergy NeatVideo ours

video 01 23.40 26.31 34.63 28.83 31.72 38.9
video 02 16.73 18.38 24.91 22.12 23.72 26.97
video 03 23.59 23.70 33.77 29.54 28.67 32.22
video 04 33.04 31.94 48.99 39.68 49.71 56.14
video 05 21.20 21.87 32.95 30.07 30.46 30.61
video 06 18.65 18.91 29.53 24.66 24.48 34.62
video 07 25.65 25.92 36.59 32.11 33.07 37.35
video 08 32.17 32.16 35.97 34.92 35.30 40.42
video 09 25.59 26.09 36.68 31.75 32.65 40.97
video 10 31.11 32.46 38.83 36.86 41.62 43.40

mean 25.11 25.77 35.29 31.05 33.14 38.16

Table 1: Quantitative evaluation of image quality using
MUSIQ [2] for digitized analog videos. Best and second
best score are printed in bold and blue, respectively.

3. Noise Synthesis Details
As the noise synthesis pipeline employs a double degra-

dation, each of the following noise types, as well as the re-
sizing operation, are applied twice in random order. Gaus-
sian noise is applied with a probability of 1 while all other
degradations are applied with a probability of 0.5.

Gaussian Noise: The noise pipeline adopts a 3D gen-
eralized zero-mean Gaussian noise model, where the corre-
lation between the R, G, and B channels is described by a
3 × 3 covariance matrix, which represents the noise corre-
lation across the color channels. The two extreme cases of
this noise model are grayscale Gaussian noise and additive
white Gaussian color noise. The general case and the two
extreme cases are sampled with probabilities of 0.2, 0.4, and
0.4, respectively, and the noise level is uniformly sampled
between [2/255, 50/255].

Poisson Noise: To sample signal-dependent Poisson
noise – which is generally used to represent photon shot
noise – the clean image is first multiplied by 10γ , then the
signal-dependent Poisson noise is added, and the image is
divided by 10γ . Here, γ is uniformly sampled from the in-
terval [2, 4]. Grayscale Poisson noise can be applied to the
image by simply converting the clean image to grayscale
before adding noise, resulting in the same grayscale Pois-



son noise for each RGB channel.
Camera sensor noise: Although we focus on digitized

analog videos, modeling camera sensor noise is still of in-
terest, since during the digitizing process the analog video
is processed in a similar manner as in a digital in-camera
image processing pipeline (ISP). This kind of noise is in-
corporated into the noise synthesis by applying a reverse
ISP pipeline [1] to the video, resulting in raw images. Sub-
sequently, read-and-shot-noise is added before applying the
forward ISP pipeline in order to again obtain RGB images.

Speckle Noise: Multiplicative speckle noise can simply
be modeled by multiplying Gaussian noise (generated by
Gaussian noise synthesis as above) to a clean image.

JPEG compression noise: Since JPEG compression
causes reduced image quality and can introduce strong
block artifacts, also JPEG compression noise is considered
in the noise synthesis pipeline. To achieve this kind of
degradation the image quality factor is uniformly sampled
from the interval [30, 95].

Resizing: Digitized analog videos often exhibit analog
film grain, which is spatially correlated noise. The resiz-
ing operation itself does not introduce any additional noise
to clean videos, however, the noise distribution of a video
already degraded with one of the noise models described
above is altered. Spatial correlation of noise can be achieved
by upsampling, while a lower signal dependency can be
achieved by downsampling. Resizing is performed by us-
ing bicubic upsampling/downsampling, where the scaling
factor is sampled uniformly from the interval [0.5, 2].

4. User Study
We provide additional results for the conducted user

study. In Figure 2, one can see the first choice of the partic-
ipants for the two criteria: noise removal (blue) and tempo-
ral consistency (orange). As can be seen, our method was
favoured by a large margin independent of the criterion for
academic methods, see Figure 2(b), and commercial meth-
ods, see Figure 2(a). For the comparison with academic
methods, MF2F was a clear second choice for both criteria
evaluated. For the comparison with commercial methods,
NeatVideo is the favoured second choice of the participants,
again for both criteria.

Furthermore, we provide more detailed insights on how
the individual participants decided for both tasks combined.
Figure 3 depicts the total count of each participants ’First
Choice’ ratings given to the different methods for all se-
quences shown. Figure 3(a) shows the results for the com-
parison with academic methods (MF2F and UDVD), while
Figure 3(b) shows the results for the commercial methods
(NeatVideo) and DarkEnergy). Our method (blue) receives
most ’First Choice’ ratings across the different individu-
als. The result is even more pronounced when comparing
our approach with the two academic methods MF2F and

UDVD, but also still very clear when comparing to the com-
mercial methods NeatVideo and DarkEnergy.

Before starting each test session in the user study the
participants were informed about the testing procedure and
were additionally given a task instruction sheet, see Figure
4(a), as well as a user interface explanation, see Figure 4(b).
There was no time limit to make a decision for a video.

5. Additional Ablation Study
We investigated the influence of the positional encoding

used in our ASwin block. We found that absolute positional
encoding performs on par with the combination of relative
and absolute positional encoding, and slightly better than
just relative position encoding, see Table 2. We also an-
alyzed the influence of the depth of our ASwin/ACSconv
block. The best results were achieved with a block depth
of 3 or 4, see Table 3. Since our goal was to keep the net-
work as lightweight as possible and there was no significant
performance difference between using a block depth of 3
and 4, we decided to use 3, which keeps the runtime and
computational effort lower.

positional encoding

rel. abs. + rel. abs.
PSNR 36.97 37.06 37.12

Table 2: Influence of positional encoding.

ASwin-ACSconv Block Depth

depth 2 3 4

PSNR 36.83 37.12 37.13

Table 3: Influence of ASwin-ACSconv Block Depth.

6. Test Set of Digitized Analog Videos
In this section, we provide an overview of the real noisy

videos used as test set, consisting of 10 digitized analog
movie scenes, see Figure 5 row 1 and Figure 6 row 1. The
test sequences have a spatial resolution of 2K and consist of
20 to 30 frames. The first row shows crops of size 700x400
of the original noisy videos. The remaining rows show the
denoising results of our method and all compared methods,
respectively, please zoom for a better view. Additionally we
provide 6 mp4 videos attached in the supplement (3 videos
for each of the two sets of compared methods: academic
and commercial), to show the significant superiority of our
method in temporal consistency. For example, judging just
on an individual frame, as shown in Figure 5 and Figure 6,
the results of MF2F and sometimes even NeatVideo seem
to be comparable to ours, however, when also considering
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Figure 2: Histogram of preferred methods of the participants for the two criteria: noise removal (blue) and temporal consis-
tency (orange). It can be observed that our approach is favoured among all tested methods, both in terms of Denoising Level
and Temporal Consistency.
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Figure 3: Overview of how the individual participants decided for both tasks combined and both sets of compared methods,
i.e. commercial (a) and academic (b). Our method is always shown in blue.

the temporal consistency, differences become very appar-
ent. We recommend to view the videos in loop mode, for
better comparison.

7. Noisy/Clean Video Pairs with Realistic Noise
Figure 7 shows examples of the realistic noisy videos

that were generated through the noise synthesis pipeline and
used for training the general purpose blind denoising net-
work. We show the results for a group of three frames to
also enable an overview of the temporal component.
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User Study – Task Sheet

Background:
We investigate multiple denoising algorithms on historic 
digitized video footage. The noise in the video is characteristic 
for digitized analog film and is induced by various sources. Our 
goal is to reconstruct the underlying clean video and receive a 
visually pleasing results.

Your task:
You will be shown video sequences that have been denoised by 
different video denoising algorithms. Pick the video that is most 
visually appealing to you with respect to the current task. There 
are two tasks to focus on in total.

Tasks
1) Noise removal: Which denoised video removes the noise 
best while preserving details, i.e. shows the best visual quality 
with respect to the reference video after denoising?
2) Temporal consistency: Which denoised video is most 
consistent over time, i.e. shows the least flickering artifacts over 
time?

Important: Only consider the current task for your choice.

(a) The task sheet

User Study – User Interface Explanation Sheet

Reference Frame:

On the left you are shown 
the noisy reference video. 

Denoised videos & choices:

You are shown three denoised videos, 
produced by different methods. Select 
your first and second choice depending 
on the task.

Background & Tasks:

Here you can see the 
general description of the 
user study.

The current task:

Here you see which 
task you are currently 
performing.

(b) The user interface sheet

Figure 4: Written information given to the individual participant prior to starting a test session in the user study.



Figure 5: Visualization of the qualitative denoising performance on the first 5 sequences of the test set (please zoom).

Figure 6: Visualization of the qualitative denoising performance on the remaining 5 sequences of the test set (please zoom).



Figure 7: Examples of the realistic noisy videos that were generated through the noise synthesis pipeline.


