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1. Method details

We provide details for the training of our method and
some ablations of our multi-task exchange block (mTEB).

1.1. Training

Considering T “ tT1, . . . , Tnu the set of n tasks to
be jointly optimized, our general MTL training loss is a
weighted combination of individual tasks losses and writes:

Ltasks “
1

|S|
ÿ

sPS

ÿ

tPT

ωtLs
t `

ÿ

tPT

ωtLfinal
t , (1)

where ωt is the task-balancing weight, Lt is the task-
specific supervision loss at intermediate scale s (i.e. Ls

t )
or at the final prediction stage (i.e. Lfinal

t ). See Sec. 4.1.1
of main paper for details on the loss functions used. Ad-
ditionally, S defines the intermediate scales of supervision
considering scale s to be the task intermediate output at res-
olution 1

2s w.r.t. input resolution. In practice, to enforce
cross-task exchange without direct mTEB supervision, we
set S equal to the scales at which the mTEB are inserted. In
our method, we keep a single mTEB and set S “ t1u.

All our models are trained on a single V100 32g GPU
and take between 10 and 20 hours to converge depending
on the task set and dataset size.

1.2. Ablations

We study the overall benefit of our multi-task ex-
change block (mTEB) on VKITTI2 with our complete ar-
chitecture. To further demonstrate the effect of atten-
tion mechanisms in our method, we remove self-attention
from the directional features of xTAM, so that Eq. (4)
of main paper now writes: fj�i “ rdiagpα1, ..., αcq ˆ

xtaskj�is . We report the performance of ‘S-D-N ’ with
spatial cross-task attention. Without self-attention we
get 97.40/3.556/14.39}30.30 for mIoU/RMSE/mErr}∆SDN,
and 97.43/3.315/14.83}31.08 with self-attention. This
shows the two types of attention are best combined.

2. Experimental details

2.1. Multi-task setup

2.1.1 Metrics.

In the following paragraph we detail the four task-specific
metrics used throughout our paper.

‚ Semantic segmentation uses mIoU as the average of
the per-class Intersection over Union (%) between la-
bel s and predicted map ŝ : mS “ mIoUpŝ, sq.

‚ Depth regression uses the Root Mean Square Error
computed between label d and predicted map d̂: mD “

RMSEpd̂, dq, reporting the RMSE in meters over the
evaluated set of images. In the SDE and DA setups,
a per-image median scaling [12] is applied since the
models used are not scale-aware.

‚ Normals estimation, we measure the absolute angle
error in degrees between the label n and predicted map
n̂: mN “ degpn̂, nq. For all datasets we retrieve labels
from the depth map [10]: we unproject the pixels using
the camera intrinsics and depth values, then compute
the cross-product using neighboring points (from 2D
perspective) [3] and average over pairs of neighbors
[11]. Cityscapes [1] provides disparity maps which we
use to compute noisy surface normals labels.

‚ Edge estimation, we apply the F1-score between the
predicted and ground-truth maps: mE “ F1pê, eq. [6]
provides ground-truth semantic edges for NYUDv2.

2.1.2 Task balancing.

Table 1 reports a subset of our grid-search to select an op-
timal set of weights for both the ‘S-D’ and ‘S-D-N ’ sets.
To avoid favoring a specific task or model, the evaluation is
conducted on the ‘MTL’ baseline model and we select the
set of weights from best ∆T metrics.



weights Semseg Ò Depth Ó Delta Ò

ωS ωD mIoU % RMSE m ∆SD %

1 1 83.83 ˘0.15 5.713 ˘0.060 -0.35 ˘0.47

1 10 79.87 ˘0.21 5.708 ˘0.036 -2.66 ˘0.40

10 1 86.20 ˘0.71 5.693 ˘0.055 +1.30 ˘0.22

50 1 87.73 ˘0.12 5.720 ˘0.029 +1.89 ˘0.21

100 1 88.00 ˘0.20 5.754 ˘0.030 +1.75 ˘0.17

100 10 86.13 ˘0.32 5.693 ˘0.039 +1.18 ˘0.45

200 1 88.13 ˘0.12 5.790 ˘0.055 +1.52 ˘0.45

500 1 88.17 ˘0.15 5.847 ˘0.043 +1.04 ˘0.30

(a) ‘S-D’ gridsearch

weights Semseg Ò Depth Ó Normals Ó Delta Ò

ωS ωD ωN mIoU % RMSE m mErr. ° ∆SDN %

1 1 1 83.50 ˘0.20 5.707 ˘0.058 23.03 ˘0.70 -0.17 ˘0.64

10 1 1 86.53 ˘0.21 5.694 ˘0.032 22.98 ˘0.68 +1.17 ˘0.93

10 1 10 86.63 ˘0.21 5.675 ˘0.050 22.61 ˘0.70 +1.85 ˘0.80

50 1 1 87.73 ˘0.21 5.706 ˘0.051 22.90 ˘0.71 +1.69 ˘0.81

50 1 10 87.77 ˘0.15 5.714 ˘0.065 22.56 ˘0.69 +2.15 ˘0.86

50 1 50 87.73 ˘0.21 5.701 ˘0.062 22.37 ˘0.70 +2.49 ˘0.76

100 1 1 88.03 ˘0.15 5.746 ˘0.030 22.95 ˘0.69 +1.49 ˘0.92

100 1 10 87.97 ˘0.15 5.714 ˘0.048 22.59 ˘0.69 +2.19 ˘0.79

100 1 50 88.00 ˘0.20 5.717 ˘0.048 22.40 ˘0.71 +2.45 ˘0.99

100 1 100 88.07 ˘0.15 5.696 ˘0.038 22.29 ˘0.70 +2.75 ˘1.04

150 1 10 88.10 ˘0.20 5.752 ˘0.059 22.59 ˘0.70 +2.01 ˘0.86

150 1 50 88.10 ˘0.20 5.738 ˘0.039 22.41 ˘0.70 +2.35 ˘0.99

150 1 100 88.13 ˘0.15 5.732 ˘0.037 22.31 ˘0.71 +2.54 ˘0.94

(b) ‘S-D-N ’ gridsearch

Table 1: Performance of the ‘MTL’ baseline model (cf. Fig. 1) for differ-
ent sets of multi-task weights on VKITTI2. There are important remarks.
First, uniform weighting is far from optimal. Second, best ∆T does not al-
ways equate to optimal individual metrics as shown by the results in bold.
Ultimately, to avoid favoring a single task, we use the set of weights with
highest ∆T metric for all models, as highlighted in gray .

2.2. Main results

2.2.1 General architectures.

In Fig. 1 we show the general architectures (i.e., considering
depth supervision), including the STL, MTL and PAD-Net
models [5], 3-waysPAD-Net [5] and Ours. Based on the same
encoder taken from a pretrained ResNet-101 backbone [4],
those multi-task networks differ only in decoder design. We
observe improvements in all tasks using both Atrous Spa-
tial Pyramid Pooling (ASPP) and UNet-like connections as
done in [5] (cf. 3-waysPAD-Net vs. PAD-Net).

2.2.2 SDE architectures.

To allow monocular depth estimation in ‘MTL for seg-
mentation’, we adopt the setup of [5] where intermediate
depth estimation from pair of consecutive frames is su-
pervised by a photometric reconstruction loss [2]. Fig. 2
shows the architecture used for all 3-ways variants for the
semantics training with SDE. Variants consist of swapping
the yellow ‘Exchange block’ with either ‘PAD-Net block’
(3-waysPAD-Net) or our ‘mTEB’ (3-waysmTEB).

To train, we use 1.0e´5, 5.0e´5, and 1.0e´6 as learn-
ing rates for the encoder, decoder and pose estimation net-

work respectively. The training strategy is similar to our
other MTL setups, only this time we initialize all models
with weights from a single-branch model trained on self-
supervised depth estimation (cf. [5]). Since the depth
loss differs from the supervised ones, we do not apply the
weighting found for ‘S-D’ but instead resort to uniform
weighting for direct comparison to [5].

2.3. MTL for Unsupervised Domain Adaptation

2.3.1 Architecture and training.

Fig. 3 illustrates our adversarial learning scheme with
source/target data flows for multi-task UDA. We consider
the two-task ‘S-D’ setup. As explained in our paper, do-
main alignment is made possible with output-level DA ad-
versarial training. In our work, alignment is done at both
intermediate and final output-levels.

We follow the strategies introduced in [7, 8]. Discrimina-
tors D are train on the source dataset Xsrc and target dataset
Xtrg by minimizing the binary classification loss:

LD “
1

|Xsrc|

ÿ

xsrcPXsrc

LBCEpDpQxsrcq, 1q`

1

|Xtrg|

ÿ

xtrgPXtrg

LBCEpDpQxtrg q, 0q, (2)

where LBCE is the Binary Cross-Entropy loss, and Qx

stands for either segmentation output QS
x or depth output

QD
x of the network. To compete with the discriminators,

the main MTL network is additionally trained with the ad-
versarial losses Ladv , written as:

Ladv “
1

|Xtrg|

ÿ

xtrgPXtrg

LBCEpDpQxtrg
q, 1q. (3)

The final MTL-UDA loss becomes:

LMTL-UDA “
1

|S|
ÿ

sPS

ÿ

tPT

pωtLs
t ` λadvLs

advt
q

`
ÿ

tPT

pωtLfinal
t ` λadvLfinal

advt
q, (4)

where λadv is used to weight the adversarial losses and is
set to 5.0e´3.

For segmentation alignment, we use “weighted self-
information” map [7] computed from the softmax segmen-
tation output Px with the formula:

QS
x “ ´Px d logpPxq. (5)

For depth alignment, we normalize the depth-map out-
puts using the source’s min and max depth values, and di-
rectly align the continuous normalized maps QD

x [8].



STL [6] MTL [6] PAD-Net [9]

3-waysPAD-Net[5] Ours

Figure 1: General architectures. For clarity, we only visualize two tasks in the multi-task networks. While the encoder is identical, models differ in their
decoder architecture, with PAD-Net, 3-waysPAD-Net and Ours using dedicated tasks exchange blocks.

Figure 2: Architecture for Self-supervised Depth Estimation (SDE).
To accommodate monocular depth on ‘Cityscapes SDE’, we follow the
setup of [5] with added intermediate depth supervision (D̂1:x). For the
two variants in the SDE setup, we use the above architecture, replacing the
‘exchange block’ with the desired one.

2.3.2 Class mapping.

To allow compatible semantics in the VKITTI2ÞÑ

Cityscapes setup, we adopt the mapping of Table 2.

3. Additional results

Figs. 4 to 6 show additional qualitative results for Syn-
thia, VKITTI2, and Cityscapes, respectively. Compar-
ing Ours with PAD-Net show an evident segmentation im-
provement on thin elements such as poles or pedestrians in

Figure 3: Multi-task UDA. Arrows indicating data flows are drawn in
either red (source), blue (target) or a mix (both). Additional discriminators
(shown as yellow triangles) are jointly trained with our multi-task model.

VKITTI2 mapped Cityscapes mapped

terrain ignore road road
sky sky sidewalk ignore
tree vegetation building building
vegetation vegetation wall vegetation
building building fence ignore
road road pole pole
guardrail ignore light light
sign sign sign sign
light light vegetation vegetation
pole pole sky sky
misc ignore person ignore
truck vehicle rider ignore
car vehicle car vehicle
van vehicle bus vehicle

mbike ignore
bike ignore

Table 2: Class mapping for VKITTI2ÞÑCityscapes DA setup.

Figs. 4 and 6 with significantly sharper results for depth and
normals across setups. Comparing against 3-waysPAD-Net is
harder due to their high scores (cf. main paper Tab. 1).



‘S-D’ ‘S-D-N ’

Segmentation Depth Segmentation Depth Normal

PAD-Net [9]

3-waysPAD-Net [5]

Ours

PAD-Net [9]

3-waysPAD-Net [5]

Ours

Figure 4: Qualitative results on Synthia. Overall, Ours produces better and sharper. Comparing visually against 3-waysPAD-Net

is harder due to high scores.
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PAD-Net [9]

3-waysPAD-Net [5]
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PAD-Net [9]

3-waysPAD-Net [5]
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Figure 5: Qualitative results on VKITTI2. Overall, Ours produces better and sharper. Comparing against 3-waysPAD-Net is
harder visually due to high scores.



‘S-D’ ‘S-D-N ’

Segmentation Depth Segmentation Depth Normals

PAD-Net [9]

3-waysPAD-Net [5]

Ours

PAD-Net [9]

3-waysPAD-Net [5]

Ours

Figure 6: Qualitative results on Cityscapes. Overall, Ours produces better and sharper. Comparing visually against
3-waysPAD-Net is harder due to high scores.
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