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A. Human evaluations with the BAPPS dataset

This experiment shows that both FID and WaM reflect
human perception. To do this, we use the BAPPS [8] dataset
which has human annotations. Specifically, we use the Two
Alternative Forced Choice (2AFC) training set with tra-
ditional and convolutional neural network distortions. In
BAPPS, a reference image is distorted in two different ways
and the human evaluator must pick which of two distortions
is closest to the reference image. There are two evalua-
tors for each image, so the scores are either 0, 0.5, or 1.0
indicating whether both evaluators picked the first image,
each evaluator picked a different image, or both evaluators
picked the second image, respectively.

We construct three different sub-datasets which capture
varying qualities of images. Our ”Good” dataset is com-
posed of the images which both evaluators agree are better.
Our ”Bad” dataset is composed of the complementary im-
ages which both evaluators didn’t pick. Our ”Ambiguous”
dataset is composed of the images for which the evaluators
disagreed. We calculate FID and WaM by comparing the
above datasets to the reference (noiseless) dataset. Hence,
we would expect FID and WaM to have low values for the
Good dataset, medium values for the Ambiguous dataset,
and high values for the Bad dataset. Since these datasets
have varying number of samples, we take subsets of the data
to make all the datasets have 23, 792 samples to avoid bias-
ing FID [2] differently for each dataset. Table 1 shows that
both FID and WaM track with human perception.

B. Human evaluations with the PIPAL dataset

This experiment shows that both FID and WaM reflect
human perception. We use the PIPAL dataset [4] which has
human annotations with finer distinctions between images
than the BAPPS dataset [8] but with fewer samples. In con-
structing the PIPAL dataset, they employ the Elo rating sys-
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Dataset FID WaM

Bad 28.8 90.3
Ambiguous 13.0 60.9

Good 7.0 50.4

Table 1: Experiment showing that both FID and WaM track with
human perception using the BAPPS dataset. Both exhibit the ideal
behavior: a decrease from Bad to Ambiguous to Good.

tem [3] to rank images on quality via human annotations.
The training set has 23, 200 distorted images (from a 200
image reference set) which can be ranked from worst to best
in quality based on their Elo scores.

We sort the dataset based on quality and then take sub-
sets whose overall quality has a specific ordering. For ex-
ample, if we use nbins = 10, we make 10 sub-datasets with
the first having the 2, 320 images with the lowest Elo score,
the second having the 2, 320 images with the next lowest
Elo scores, and so on. The only problem with this approach
is that the number of images we have to work with is ex-
tremely limited, however this is the most appropriate dataset
that exists to our knowledge. We use ResNet-18 to get fea-
tures in R512 which allows the fitting of the Gaussian and
GMM a little better; however, note that the reference dataset
has only 200 samples, making this an extremely overpa-
rameterized problem. We calculate FID and WaM by com-
paring each sub-dataset to the reference (noiseless) dataset.
Thus we average over 250 WaM values, modifying only the
GMM initializations. FID does not need to be averaged over
because it is deterministic. Our results are displayed in Fig-
ure 1.

C. GMMs can fit the distributions in Figure 1

Figure 1 of the main paper shows that Gaussians can-
not model several distributions well. However, we show in
Figure 2 that GMMs can indeed model those distributions.
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Figure 1: Experiment showing that both FID and WaM track with
human perception using the PIPAL dataset. Both metrics should
decrease monotonically and hence start to break down when we
use nbins = 10. The red circles indicate a statistically significant
break in monotonicity.

D. Targeted perturbations (extended)

Here we show the targeted perturbation results in more
detail than in Section 5.1 of the main paper. We don’t show
figures of the images before and after perturbation besides
Figure 4 of the main paper because they are all impercep-
tible, with maximum pixel differences of 0.25%. All the
FID, WaM, and R values were calculated using Inception-
v3. We use Equation (3) for Table 2, Equation (4) for Ta-
ble 3, Equation (5) for Table 4, Equation (6) for Table 5,
and FID for Table 6. We follow recent work [6, 5]1 in or-
der to backpropagate through FID. Our results show that in
every case, FID is significantly more sensitive to impercep-
tible perturbations of the first two moments when compared
to WaM.

1Although the authors of the paper introduced a Fast FID, we back-
propagate through FID in our work.

E. Kernel Inception distance experiments
Kernel Inception distance (KID) [1] is a popular method

to evaluate the performance of a GAN which uses embed-
dings from powerful classifiers, such as Inception-v3 [7].
We use the cubic polynomial kernel, i.e., k(x,y) =
( 1dx

⊤y + 1)3 for x,y ∈ Rd, to compute similarities be-
tween featurized samples, as is typically done. We use
this method to evaluate WaM’s sensitivity to imperceptible
noise perturbations. To do this, we define RKID to be the
ratio of the KID of the perturbed images over the KID of
the original images. We further define

R′ =
RKID

RWaM
.

All the KID, WaM, and R values were calculated using
Inception-v3. We use Equation (3) for Table 7, Equation
(4) for Table 8, Equation (5) for Table 9, Equation (6)for
Table 10, and FID for Table 11. These results show that
KID is is still significantly affected by these perturbations,
even though some values of RKID are smaller than RWaM.
WaM is less sensitive than both FID and KID in the major-
ity of these experiments, implying that it does not depend
as heavily on the first two moments and can capture more
higher order information than both metrics.

We now consider the random perturbations in Section
5.2 in the main paper and evaluate R′ on them, as shown in
Tables 12 and 13. We see that KID has similar sensitivity to
WaM on BigGAN generated images but much higher sensi-
tivity on real images. In fact, KID has higher sensitivity on
real images than FID. We stress that the ability to evaluate
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Figure 2: GMMs are able to fit a variety of distributions signifi-
cantly better than Gaussians. We use a GMM with k = 20 com-
ponents.



realistic images is important because that is what we want
to generate. Therefore, WaM provides a means to evaluate
realistic images better than FID and KID under impercepti-
ble noise perturbations.



Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

FID = 55.7

WaM2 = 378.4

FID = 154.2

WaM2 = 424.3

FID = 3.7

WaM2 = 237.0

FID = 46.6

WaM2 = 280.0

RFID = 2.8

RWaM = 1.1

R = 2.5

RFID = 12.7

RWaM = 1.2

R = 10.8

Table 2: Mean perturbations: We show that FID values are significantly more sensitive to imperceptible perturbations to the feature
means (Equation (3)).

Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

FID = 55.7

WaM2 = 378.4

FID = 125.7

WaM2 = 540.8

FID = 3.7

WaM2 = 237.0

FID = 113.0

WaM2 = 422.5

RFID = 2.3

RWaM = 1.4

R = 1.6

RFID = 30.9

RWaM = 1.8

R = 17.3

Table 3: Covariance perturbations: We show that FID values are significantly more sensitive to imperceptible perturbations to the feature
covariances (Equation (4)).

Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

FID = 55.7

WaM2 = 378.4

FID = 177.6

WaM2 = 521.3

FID = 3.7

WaM2 = 237.0

FID = 106.9

WaM2 = 412.2

RFID = 3.2

RWaM = 1.4

R = 2.3

RFID = 29.2

RWaM = 1.7

R = 16.8

Table 4: Mean-covariance perturbations: We show that FID values are significantly more sensitive to imperceptible perturbations to the
feature means and covariances together (Equation (5)).

Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

FID = 55.7

WaM2 = 378.4

FID = 145.9

WaM2 = 578.3

FID = 3.7

WaM2 = 237.0

FID = 112.2

WaM2 = 444.0

RFID = 2.6

RWaM = 1.5

R = 1.7

RFID = 30.7

RWaM = 1.9

R = 16.4

Table 5: Alternative covariance perturbations: We show that FID values are significantly more sensitive to imperceptible perturbations
to the feature covariances, using a different metric on the covariances than the Frobenius norm (Equation (6)).



Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

FID = 55.7

WaM2 = 378.4

FID = 166.5

WaM2 = 548.5

FID = 3.7

WaM2 = 237.0

FID = 112.0

WaM2 = 377.0

RFID = 3.0

RWaM = 1.4

R = 2.1

RFID = 30.6

RWaM = 1.6

R = 19.2

Table 6: FID perturbations: We show that FID values are significantly more sensitive to imperceptible perturbations when we adversari-
ally attempt to inflate FID.

Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

KID = 0.029

WaM2 = 378.4

KID = 0.139

WaM2 = 424.3

KID = 0.0007

WaM2 = 237.0

KID = 0.066

WaM2 = 280.0

RKID = 4.7

RWaM = 1.1

R′ = 4.2

RKID = 94.6

RWaM = 1.2

R′ = 80.1

Table 7: Mean perturbations: We show that KID values are significantly more sensitive to imperceptible perturbations to the feature
means (Equation (3)).

Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

KID = 0.029

WaM2 = 378.4

KID = 0.014

WaM2 = 540.8

KID = 0.0007

WaM2 = 237.0

KID = 0.087

WaM2 = 422.5

RKID = 0.5

RWaM = 1.4

R′ = 0.3

RKID = 125.6

RWaM = 1.8

R′ = 70.5

Table 8: Covariance perturbations: We show that KID values are significantly more sensitive to imperceptible perturbations to the
feature covariances (Equation (4)).

Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

KID = 0.029

WaM2 = 378.4

KID = 0.097

WaM2 = 521.3

KID = 0.0007

WaM2 = 237.0

KID = 0.100

WaM2 = 412.2

RKID = 3.3

RWaM = 1.4

R′ = 2.4

RKID = 143.9

RWaM = 1.7

R′ = 80.8

Table 9: Mean-covariance perturbations: We show that KID values are significantly more sensitive to imperceptible perturbations to the
feature means and covariances together (Equation (5)).



Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

KID = 0.029

WaM2 = 378.4

KID = 0.034

WaM2 = 578.3

KID = 0.0007

WaM2 = 237.0

KID = 0.074

WaM2 = 444.0

RKID = 1.2

RWaM = 1.5

R′ = 0.8

RKID = 106.1

RWaM = 1.9

R′ = 56.6

Table 10: Alternative covariance perturbations: We show that KID values are significantly more sensitive to imperceptible perturbations
to the feature covariances, using a different metric on the covariances than the Frobenius norm (Equation (6)).

Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)

KID = 0.029

WaM2 = 378.4

KID = 0.057

WaM2 = 548.5

KID = 0.0007

WaM2 = 237.0

KID = 0.077

WaM2 = 377.0

RKID = 2.0

RWaM = 1.4

R′ = 1.3

RKID = 111.5

RWaM = 1.6

R′ = 70.1

Table 11: FID perturbations: We show KID values are significantly more sensitive to imperceptible perturbations when we adversarially
attempt to inflate FID.

σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

KID(orig) 2.11 2.11 2.11 2.11 2.11
KID(pert) 2.22 2.74 3.47 4.65 5.23
WaM2(orig) 504.30 504.30 504.30 504.30 504.30
WaM2(pert) 539.54 516.75 628.68 748.65 1328.01

RKID 1.05 1.29 1.64 2.2 2.47
RWaM 1.07 1.02 1.25 1.48 2.63
R′ 0.98 1.26 1.31 1.49 0.94

Table 12: R′ values for BigGAN-generated images using additive isotropic Gaussian noise (as explained in Section 5.2 of the main
paper)showing that KID has similar sensitivity as WaM to noise perturbations of generated images. The original image above was randomly
selected from a set of 50,000 images generated by BigGAN. The KID, WaM, and R′ values were calculated using ResNet-18.

σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

KID(orig) 0.025 0.025 0.025 0.025 0.025
KID(pert) 0.033 0.187 0.496 1.146 2.745
WaM2(orig) 208.45 208.45 208.45 208.45 208.45
WaM2(pert) 219.49 316.06 549.03 1081.28 4007.29

RKID 1.283 7.363 19.528 45.143 108.118
RWaM 1.05 1.52 2.63 5.19 19.22
R′ 1.22 4.84 7.43 8.70 5.63

Table 13: R′ values for real images (ImageNet validation data) using additive isotropic Gaussian noise (as explained in Section 5.2 of the
main paper) showing that KID is more sensitive than WaM to noise perturbations of real images. The original image above was randomly
selected from a set of 50,000 images of the ImageNet validation dataset. In contrast to Figure 5 of the main paper, we see that KID is more
sensitive to these perturbations when the images look more realistic. The FID and WaM values were calculated using ResNet-18.
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