
Burst Vision Using Single-Photon Cameras – Supplementary Technical Report

Sizhuo Ma1 Paul Mos 2 Edoardo Charbon 2 Mohit Gupta 1

sizhuoma@cs.wisc.edu paul.mos@epfl.ch edoardo.charbon@epfl.ch mohitg@cs.wisc.edu

1University of Wisconsin-Madison, USA
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Figure 1. Hardware setup. (a) We use SwissSPAD2 [5] to cap-
ture binary sequences. Image reproduced from [5] with permis-
sion. (b) Example hardware setup with a SPAD camera, a thermal
camera and a night vision camera on the same cart. This enables
capturing synchronized videos where the cameras share the same
trajectories.

1. Hardware Setup

We capture binary sequences with a SwissSPAD2 [5]
(Fig. 1(a)) to demonstrate the capability of quanta vision.
We read off the binary pixel values for half of the SPAD ar-
ray, which gives a spatial resolution of 512×256. The cam-
era can capture up to 130,000 binary frames at a maximum
frame rate of 96.8kfps which are stored on-chip for offline
processing. To capture long sequences for video tasks such
as SLAM, we also developed an FPGA design that contin-
uously streams the binary frames to a PC with an SSD via
USB 3.0 while capturing, which supports arbitrarily long bi-
nary sequences at up to 17.3kfps. We also capture synchro-
nized videos from commodity cameras such as DSLR, cell-
phone, night vision cameras and thermal cameras. Fig. 1(b)
shows an example setup where we place the SPAD camera,
a thermal camera and a night vision camera on a cart. The
cart can then be moved during capturing such that the three
cameras share the same trajectory.

2. Additional Results

This section discusses quanta vision sequences that are
not included in the main paper due to space constraints.

Resolving blur-noise trade-off using burst vision. Fig. 2

shows a more detailed visualization on how the blur-noise
trade-off is resolved by quanta vision (Fig. 2 in the main
paper). We capture a binary sequence in a garage during
nighttime, with all the lights turned off. This results in an
extremely low light level, as shown by the single binary
frames. We run YOLOv3 [4] on naive average and burst re-
construction respectively. Naive average results suffer from
the blur-noise trade-off. The images are either too noisy or
too blurry, and object detection fails on all of them. Explicit
burst vision is able to solve the trade-off by compensating
for the motion, generating images with enough signal when
a sufficiently long integration window is used.

Recovering visual features for camera tracking. Many
vision tasks involve robust recovery and tracking of struc-
tural features, which is sensitive to noise and blur. Fig. 3
shows an indoor, handheld sequence for simultaneous local-
ization and mapping (SLAM). We run ORB-SLAM3 [1] on
reconstructed images offline. We switch a lamp on (7.5lx)
and off (0.02lx) during the sequence as shown in the syn-
chronized images from a static DSLR (Canon EOS Rebel
T5i). To show how challenging this lighting condition is,
we also run an ArCore demo app1 on a cellphone and ORB-
SLAM3 on a night vision camera side-by-side. At first the
lamp is on, and all three SLAM systems work properly.
When the lamp is turned off, the room becomes extremely
dark such that the DSLR gives an almost completely black
image with a few noise spots. Cellphone and night vision
camera lost tracking due to low image quality. SPAD still
recovers sufficient features for estimating camera motion.

Recovering spatial details under strobing light. Fig. 4
shows an example of scanning a fast moving QR code un-
der a rapidly flashing light (about 2Hz). The DSLR images
are noisy and blurry, especially when the flash is off. The
night vision camera captures noisy and blurry images when
the flash is off, and gets overexposed images when the flash
is on as it fails to adapt to high lighting level immediately.
The thermal camera cannot capture the QR code which is

1ARCore Elements: https://play.google.com/store/
apps/details?id=com.google.ar.unity.ddelements

https://play.google.com/store/apps/details?id=com.google.ar.unity.ddelements
https://play.google.com/store/apps/details?id=com.google.ar.unity.ddelements
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Naive Average Explicit Burst Vision

Figure 2. Resolving blur-noise trade-off using burst vision. We capture a binary sequence in a garage during nighttime, with all the
lights off. (Left) Naive average images suffer from the blur-noise trade-off and are either too noisy or too blurred. Object detection fails on
all the images. (Right) Burst vision resolves the blur-noise trade-off and gives high-quality images for successful object detection when a
sufficiently long integration window is used (≥ 1000 frames, 10ms software-defined exposure time).
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Figure 3. Recovering visual features for camera tracking. Handheld camera tracking for an indoor scene. The scene is illuminated by
a lamp which switches between on (7.5lx) and off (0.02lx). We run ORB-SLAM3 on the reconstructed SPAD images offline. To show
how challenging the lighting is, we show DSLR images from a static side view. We also run a demo ArCore app on a Galaxy S8 and
ORB-SLAM3 on a night vision cameras, which are rigidly fixed to the SPAD. (Top) When the lamp is on, all cameras see clear images and
all the SLAM systems work. (Bottom) When the lamp is off, the DSLR image looks almost black with only noise spots. The cellphone
and night vision camera fail to track due to low image quality. The SPAD images contain sufficient features for reliable tracking.
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Figure 4. Recovering spatial details under strobing light. A QR code moves fast under a rapidly flashing light (about 2Hz). DSLR
images are noisy and blurry. The night vision images are noisy and blurry when the flash is off, and overexposed when the flash is on. The
thermal camera cannot capture the QR code in the visible light range. The SPAD captures high-quality images in both lighting conditions
for robust QR code decoding.

only discernible in visible light range. The SPAD camera
captures high-SNR, low-blur images in both lighting condi-
tions, and the QR code is correctly decoded in both cases.

Background subtraction in low light. In addition to object
detection, tracking, QR decoding, scene text detection and
SLAM, we also evaluate the quanta vision for other tasks
which are not included in the main paper due to page con-
straints. Fig. 5 shows a person walking and running in a
dark room (same sequence as Fig. 7 in the main paper). We
run a traditional PCA-based background subtraction algo-
rithm [7] on the naive average and burst-reconstructed im-
ages. To help understand what the scene looks like, we

first show the burst reconstructions in the first row, and then
show the background-subtracted images for both naive av-
erage and burst reconstruction. The foreground mask from
naive average suffers from incomplete body parts, while the
result from burst reconstruction is more accurate.

Fast-moving human pose estimation. Fig. 6 shows a per-
son doing jumping jacks in a dark room. This is a chal-
lenging sequence because of the fast motion and cluttered
background. We run a learning-based human pose estima-
tor [3] on the images. Naive average cannot estimate the
human pose correctly. Burst reconstruction recovers most
of the body parts, with the exception of arms in some of the
images because arms are thin and move extremely fast.
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Figure 5. Background subtraction in low light. A person walks and runs (foreground) in a dark room with lights off (background). (Top)
We show burst reconstructions as visualizations of the scene. (Middle) Foreground mask from naive average images does not completely
cover the body parts. (Bottom) Foreground mask from burst reconstruction better covers the entire body.
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Figure 6. Fast-moving human pose estimation. A person doing jumping jacks in a dark room. (Top) Naive average fails to estimate all
the body parts correctly. (Bottom) Burst reconstruction is able to recover poses with high accuracy, despite recovery of the arms being
challenging because they are thin and move extremely fast.

Action recognition in low light. Fig. 7 shows a person
clapping and waving hands in a dark room. We run a state-
of-the-art action recognition algorithm [2] on a sliding win-
dow of 32 frames across the reconstructed sequence. Naive
average images are noisy and blurry (e.g. waving hand). As
a result, the action is not correct recognized. Burst recon-
struction generates better quality images, where the clap-
ping and waving action is correctly recognized.

Face-moving face detection in low light. Fig. 8 demon-

strates running face detection [6] on a jumping person,
which is challenging due to the dark environment and the
fast vertical movement. With burst vision, it is still able to
detect the faces from the reconstructed images.
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Figure 7. Action recognition in low light. A person clapping and waving hands in a dark room. (Top) Naive average fails to recognize
the action due to heavy noise and blur. (Top) Burst reconstruction generates higher quality images which enable correct recognition of the
actions. Faces are blurred for anonymity.

Figure 8. Fast-moving face detection in low light. We run face detection on a jumping person. This is a challenging task due to the low
light level and fast movement of the person. With burst vision, the faces are successfully detected. Faces are blurred for anonymity.
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