This supplementary material contains the following five
sections. In Section[A]we demonstrate that training DVF us-
ing ground truth projected 3D labels can generalize to multi-
ple 2D detectors, including detectors that are not fine-tuned
on KITTI train set. In Section [B]we conduct a range-based
evaluation of DVF and show significant improvements over
sparse fusion at far range. In Section|[C]we discuss the effect
of the simulated confidence sampling strategy on the per-
formance of DVF models. In Section [D] we discuss the ef-
fect of the drop-out percentage on the performance of DVF
models. In Section [E| we present the standard deviation of
DVF models trained on KITTI dataset. In Section[F] we pro-
vide more examples for visualizing DVF. In Sections [G] we
discuss limitations of the proposed method and discuss po-
tential solutions. Finally, in Section [H] we briefly discuss
potential negative impact of our work.

A. Inference using Pretrained 2D Object De-
tectors

One of the advantages of training DVF models directly
with ground truth projected 3D bounding box labels rather
than noisy, detector-specific, 2D predictions, is that it en-
ables the generalization to any 2D object detector during
inference time. To show this, instead of using CLOCs 2D
predictions [18]], we train a single DVF +PV-RCNN using
ground truth labels and conduct inference using multiple
2D object detectors. Specifically, we use Detectron2 [33]]
pretrained Cascade-RCNN [1] and Mask-RCNN [8] mod-
els with ResNet-50 [9]] backbone to extract 2D predictions
without fine-tuning on KITTI images. In addition, we fine-
tune the same models on KITTI train set and show 3D and
BEV AP|g,, on val set compared to models that are not
fine-tuned on KITTI ftrain set. In Table [§] we observe that
the trained model DVF +PV-RCNN gains are consistent
compared to the baseline PV-RCNN [22]] regardless of the
pretrained 2D model. In addition, due to the small size of
KITTI train set, fine-tuning does not have a significant ad-
vantage over using predictions from pretrained 2D object
detectors.

B. Range-based Evaluation

DVF fuses at the voxel level which augments LiDAR
point cloud information with dense details from image data.
This is contrary to Pointpainting [27]] where fusion is at the
3D point level, and is therefore sparse, especially at mid-
to-long range. We show that dense fusion is especially use-
ful at mid-to-long range, where more objects are occluded
and LiDAR returns are sparse. In Table [0] we conduct a
range-based evaluation for the 3D predictions of Pointpaint-
ing [27]] and DVF applied to PV-RCNN [22]. We evaluate
3D AP |g,, on three range bins [0.0, 20.0]m, [20.0, 40.0Jm
and greater than 40m. Inference is done using 2D predic-

tions from Cascade-RCNN [1]. In addition, we conduct
inference using ground truth 2D bounding boxes for both
models to determine an upper bound on the potential gains
for Pointpainting and DVF. Dense voxel fusion shows sig-
nificant improvement over Pointpainting [27] of +1.65%
and +5.05% at long range (i.e., greater than 40m ) using
Cascade-RCNN [1] 2D predictions and ground truth labels
respectively.

C. Effect of Simulated Confidence

To study the effect of the simulated confidence of the
projected 3D bounding boxes on the performance of DVF
models, we conduct an experiment using SECOND [37]]
where we vary the minimum confidence value a from 0.0
to 1.0, while the maximum confidence b is fixed at 1.0. For
each experiment, we drop-out 50% of the ground truth sam-
ples added to each scene to simulate missed image detec-
tions. Looking at Figure[6] we observe that low confidence
values result in poor performance since missed detections
are already simulated using the drop-out strategy. In addi-
tion, very high a results in simulating an overly confident
2D object detector. The optimal values for SECOND [37]]
are around [0.5,0.8]. The minimum simulated confidence
is set at 0.8 for all our experiments. We have also experi-
mented with sampling confidence values proportional to the
size of the projected 3D bounding box, but did not achieve
better results over the presented uniform sampling strategy.

D. Effect of Drop-out Percentage

During the training of DVF models, a percentage of the
objects (i.e., ground truth samples) added to the point cloud,
are not projected back to the foreground mask. The goal
here is to simulate image missed detections. To study the ef-
fect of the drop-out percentage on the performance of DVF
models, we conduct an experiment using SECOND [37]]
where we vary the drop-out percentage of the ground truth
samples from 0% to 100%. Here, we set the maximum
number of added ground truth samples per scene to 5.0.
Similar to the implementation of ground truth sampling in
OpenPCDet [26] library, only samples that do not collide
with other samples in the current scene are added. Looking
at Figure [7| we observe that dropping 100% of the added
ground truth samples from the foreground mask results in
a model that achieves almost the same performance as the
baseline. We reason that the model learns to ignore the im-
age information as it misses many objects that can be eas-
ily detected from the LiDAR data. On the other hand, set-
ting the drop-out percentage 0.0% results in a model that
relies too much on image information and thus is not robust
against image missed detections. Dropping around 50% of
the ground truth samples from the foreground mask is a
good compromise. We set the drop-out percentage to 50%



Method Inference 2D Detector 3D AP BEV AP
Model Pretrained Fine-tune | Easy Mod. Hard | Easy Mod. Hard
PV-RCNN [22] N/A N/A N/A 91.88 84.83 82.55 | 93.73 90.65 88.55
C-RCNN Ccoco Yes 92.81 8553 83.01 | 9585 91.22 88.94
C-RCNN COoCoO No 92.55 8537 8292 | 9532 91.26 88.93
DVE+PV-RCNN M-RCNN  Cityscapes Yes 9290 8539 83.00 | 9591 91.27 88.97
M-RCNN  Cityscapes No 9295 8547 8294 | 96.02 9132 88.95

Table 8. 3D and BEV AP|r,, results on KITTI [6] val set of a single DVF +PV-RCNN trained model using multiple 2D detectors
at inference time. Two models are considered; Cascade-RCNN [1]] C-RCNN and Mask-RCNN [8] M-RCNN. C-RCNN models are
pretrained on COCO dataset [14] and M-RCNN are pretrained on Cityscapes dataset [4]. Finally, the same models are fine-tuned on

images in KITTI [6] train set.

Figure 5. First row shows input images from KITTI [6] dataset, second row shows red points represent LiDAR returns projected onto
the image plane, and third row shows multi-scale dense voxel centers projected onto the image plane, where green and red points are
associated with background and foreground voxel features respectively. DVF increases the number of correspondences between image and

LiDAR features which improves detection at mid-to-long range.

C-RCNN GT
Method Car - 3D AP Car - 3D AP
0-20m  20-40m  40-Inf | 0-20m  20-40m  40-Inf
Painted PV-RCNN | 88.13 81.39  30.38 | 93.15 84.23  35.70
DVF+PV-RCNN | 90.62 8148  32.03 | 93.60 8529  40.75
Improvement +2.49 +0.09  +1.65 | +0.45 +1.06  +5.05

Table 9. Range-based evaluation of Pointpainting [27]] and DVF
applied to PV-RCNN [22]]. The same training strategy is used for
both fusion methods. Inference on the KITTI val set is performed
using both using Cascade-RCNN [1] 2D predictions C-RCNN and
ground truth 2D bounding boxes GT. Improvements in 3DAP| r,,
are shown relative to painted models.

for all our experiments.

E. Standard Deviation of Experiments

Table [I0l shows the standard deviation of DVF models.
The standard deviation is computed based on running 3 ex-
periments for each model. In addition, we also report the
improvement relative to the baseline models.
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Figure 6. The effect of the minimum confidence on the perfor-
mance of DVF + SECOND [37]. Here, we also show the perfor-
mance of the baseline.
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Figure 7. The effect of the drop-out percentage on the performance
of DVF + SECOND [37]. Here, we also show the performance of
the baseline.

Method Car - 3D AP Car - BEV AP
Easy Mod. Hard | Easy Mod. Hard
DVF + SECOND 043 024 0.19 | 051 034 0.11
Improvement 1.74 1.01 071 | 1.83 0.83 0.30
DVF + Voxel-RCNN | 0.12 0.09 0.10 | 0.15 0.11 0.12
Improvement 052 061 031 | 0.66 0.63 0.54
DVF + PV-RCNN 023 0.12 0.08 | 0.04 0.11 0.07
Improvement 1.19 101 058 | 248 1.01 0.62

Table 10. The standard deviation of 3D and BEV AP |g,, on
KITTI val set for DVF models on car class. The improvement
relative to the baseline is also presented.

F. DVF Visualization

Figure[5|shows how DVF increases the number of corre-
spondences between LiDAR point cloud and image pixels.
Here, the second row shows the sparse point cloud projected
onto the image plane. In the last row, we project voxel cen-
ters associated with occupied voxels onto 2D predicted fore-
ground mask. Voxel centers with a foreground probability
of more than 0.9 are colored in red, while the remaining
voxels are considered background and are colored in green.

G. Limitations

Training Strategy. Our training strategy consists of train-
ing with ground truth 2D bounding boxes while simulating
image missed detections throughout the training phase. We
have demonstrated that training using this strategy gener-
alizes better than training with erroneous 2D predictions.
However, our proposed training strategy does not simulate
errors in bounding box dimensions. One possible approach
to address this limitation is to train DVF models by adding
random noise to the center, width and height of ground
truth 2D boxes to simulate small shifts in 2D predictions.
Moreover, we could also simulate 2D prediction confidence

based on occlusion, size and number of LiDAR returns per
3D bounding box.

Object Boundaries. One of the main advantages of us-
ing 2D bounding boxes for fusion compared to segmenta-
tion masks is the efficient inference time of 2D object de-
tectors compared to segmentation networks. However, 2D
bounding boxes do not capture object boundaries and thus
are less accurate than segmentation masks. Hence, back-
ground voxels around bounding box boundaries are incor-
rectly weighted as foreground voxels. One possible ap-
proach to address to address this limitation is by modelling
2D bounding box detections as a mixture of Gaussian dis-
tributions. The intuition is that our confidence of whether
a pixel is foreground or background within a bounding box
falls off as we move away from the center of the bounding
box. The parameters of each Gaussian distribution corre-
sponding to a 2D prediction can be learned based on the
width, height and depth distribution of LiDAR points within
the bounding box.

H. Potential Negative Impact

Some potential negative impacts of 3D object detectors
include using models for ethically questionable surveillance
applications like detecting, counting, and tracking of peace-
ful demonstrators. Therefore, it is critical to enforce the
anonymization of the input sensor data. For example, li-
cense plates of vehicles and faces of pedestrians and cyclists
should be completely anonimized before conducting infer-
ence.



