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1. Overview

In this supplementary we cover the following

1. More Details and performance evaluation of SMSNet
2. Architecture of QFCNN

3. More dataset details and hyperparameter choice dis-
cussion.

4. Implementation details of adversarial and mean
teacher methods

5. Distributions of SSIM scores for the proposed and
Mean Teacher method

6. Additional visual examples and ensemble analysis re-
sults on FUJI and LOL datasets

2. Details of SMSNet

We discuss architecture and training details of SMSNet,
the LLIR model we use for semi-supervised learning. We
also evaluate its performance when compared to other pop-
ular LLIR models.

Bandpass subbband learning: We employ the same
Bandpass CNN architecture consisting of a series of twenty
3x3 convolutional layers with ReL.U activations and local
residual connections to restore each subband. The CNNs
take as input the Gaussian pyramid of the low-light image
at each level and output the restored band pass subband. We
use the L1 loss between the predicted and the ground truth
subbands to train each subband. In Figure

Lowpass subbband learning: The architecture for
Lowpass CNN is similar to that of Bandpass CNN, except
that we also include instance normalization layers as shown
in Figure[2] Note that we do not include these normalization
layers in all the modules as we observed some drop in per-
formance by including these layers in all the modules. Also
note that, we did not find any benefit of including these nor-
malization layers in the Bandpass CNNs. We train Lowpass
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Figure 1. Architecture of the Bandpass CNN.

CNN by using a combination of SSIM and L1 error as a loss
function with equal weights.
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Figure 2. Architecture of the Lowpass CNN.

Performance Evaluation: We now evaluate the per-
formance of SMSNet. We use 5 scales in SMSNet,
which amounts to 4 bandpass subbands and a lowpass
subband. We compare it with several methods including
residual learning based DLN [4]], retinex theory based ap-
proach KIND [6] and recent multiscale subband learning
approaches DRBN [J3]. In Table[I] we report the SSIM and
PSNR scores for these methods on all three datasets used in
the paper. Note that SMSNet performs very well when com-
pared to other methods. In our experiments, we find that



inclusion of instance normalization layers in the Lowpass
CNN is very important for good performance of SMSNet,
especially on SONY and FUJI datasets. There is a signifi-
cant drop in performance (0.06 and 0.08 in SSIM for SONY
and FUJI respectively) without its use. Other methods can
also perhaps perform better on the SONY and FUJI datasets
with the inclusion of these layers. However, their architec-
tures are complex and incorporating these layers into them
is not straightforward.

Table 1. SSIM/PSNR numbers for various methods on 100% la-

belled datasets.
Methods SONY FUIJI LOL
DLN 0.63/19.33 | 0.59/19.85 | 0.81/21.95
KIND 0.32/17.65 | 0.24/15.85 | 0.80/20.86
DRBN 0.68/19.94 | 0.58/18.98 | 0.83/20.13
SMSNet | 0.74/23.05 | 0.69/22.63 | 0.78/21.91

3. Architecture of QFCNN

We now discuss the architecture of our QFCNN model
which we use to compute quality features. In QFCNN, each
of the modules has a convolutional layer, a Batch normal-
ization layer and a dropout layer. We do not use any residual
connections in QFCNN. Finally, 128 dimensional features
are extracted from QFCNN using an adaptive average pool-
ing layer which makes it invariant to input image size.
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Figure 3. Architecture of QFCNN.

4. Additional Experiment Details and Results

Here we discuss datasets in more details and also present
the implementation details of adversarial and mean teacher
methods which we benchmarked for semi-supervised learn-
ing for LLIR. Further, we also present some additional anal-
ysis and visual examples.

4.1. Datasets

The SID dataset has two subsets of images, one from
a SONY camera and the other from a FUJI camera. We
treat these as separate datasets. While the SONY dataset

contains 1865 images for training and 598 for testing, the
FUIJI dataset contains 1654 training images and 523 testing
images. The images in these datasets are captured by vary-
ing the exposure times and ISO settings of different scenes.
The SID dataset has images in raw format. We thus pre-
process the raw images using the python library rawpy to
obtain SRGB images. While processing the raw images us-
ing rawpy, we set the field no_auto_bright=False to turn on
the usual camera pipeline operations of linear enhancement
and gamma correction. In our experiments, we subsample
all the images to a resolution of 832 x 1248.

LOL dataset already has SRGB images with 400 x 600
resolution and thus we do not pre-process them.

4.2. Justification for the choice of hyperparameters

Since we work with very less training data, there is not
enough data to construct a validation set. Thus, we selected
the hyperparameters such as learning rate (LR), LR decay
and number of epochs by observing the convergence of the
training loss curve for one or two labeled-unlabeled data
splits. We verified for these splits that the convergence of
training loss does not lead to overfitting by verifying on the
original validation set of the SID data. Then we keep the
hyperparameters constant across all the 10 splits of a given
dataset. The parameter choices for the LOL dataset were
scaled based on its size with respect to the SID datasets.
We observe that the performance is fairly robust to the ex-
act choice of these parameters. 7 is kept fixed across all
datasets and splits.

4.3. Implementation details of various methods

Adversarial Loss: For implementing adversarial loss
training on unlabelled data, we adopt least squares GAN
based adversarial training [1]]. We use a batch size of 16 in
which every batch consists of equal number of labelled and
unlabelled data. For the labelled data we use the same loss
as used for training Lowpass CNN in SMSNet while the
adversarial loss is computed on the unlabelled data. Overall
loss is linear combination of loss on labelled data and un-
labelled data with equal weights. Similar to SMSNet, we
train it for 90 epochs. We use a LR of 1e — 3 and 2e¢ — 4
for Lowpass CNN and the discriminator respectively. For
Lowpass CNN the LR is reduced to 1e — 4 and 1e — 5 after
50 and 70 epochs respectively. In our implementation we
use a discriminator with spectral normalization layers [2].
We show the architecture of the discriminator in Figure §]

Mean Teacher: For mean teacher [3] training we read
equal number of labelled and unlabelled data in a batch. We
use a batch size of 16. We train mean teacher for 90 epochs
with LR of 1e — 3 reduced to 1e — 4 and le — 5 after 50
and 70 epochs respectively. Let, h(.) denote the Lowpass
CNN model used to process low light images. Let, § and
6’ denote the corresponding parameters of the student and
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Figure 4. Discriminator architecture.

teacher model respectively. Then the loss on an unlabelled
image y is

‘](0) = Hh’(YagaW) - h(y7elawl)||2a

where w is the zero mean Gaussian noise. Similar to the
original implementation, we use standard deviation of 0.15.
At iteration t, ' is computed as

0, = ab,_, + (1 — a)b.
We rampup o to 0.95 in the first 20 epochs.

4.4. Distribution of SSIM of our method vs. Mean
Teacher

In Figure 5] we show the box plots for distribution of
SSIM on different splits for our method when compared to
the Mean Teacher. We see that our method outperforms
the Mean Teacher by achieving a higher SSIM score with
a smaller variance across the splits.

4.5. Visual Examples

4.5.1 Visual comparison of SMSNet with other
restoration methods

In Figure [6|and [7] we show visual comparisons of restored
low light images by various methods when trained in a fully
supervised fashion on 100% and 5% labelled data respec-
tively. Note that SMSNet restored images are perceptually
better than other methods in both the cases. This shows that
even in limited training data setting SMSNet yields better
quality images than other methods.

4.5.2 Additional visual examples of various semi-
supervised methods

In Figure[§] we show more visual examples of restored low
light images by various semi-supervised methods for the
5% labelled data case.
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Figure 5. Box plot for distribution of SSIM scores of Mean
Teacher (MT) and proposed method across 10 splits.

4.6. Ensemble Analysis Results

While in the paper we showed the results for SONY
dataset, we show the results for FUJI and LOL datasets in

Figure[9]
5. Limitations

Following are some of the limitations that the proposed
semi-supervised learning approach for LLIR suffers from.

1. Note that the method depends on the presence of di-
verse distortions in the labeled dataset. If no labeled
datapoint has distortions similar to an unlabeled sub-
band, this method may not produce a good quality
pseudo-label.

2. While we have significant improvements in perfor-
mance compared to the baselines, there is still a sig-
nificant performance gap compared to the 100% data
case. Nevertheless, this is the first attempt at the prob-
lem of semi-supervised learning for LLIR and should
initiate further research in this important area.

3. We observe that the performance improvement of our
method with respect to the baseline tends to saturate
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Figure 6. Examples of low light images by various methods when trained on 100% SONY dataset. Note that perceptual quality of images
restored by SMSNet is better than others.

Low Light SMSNet

Figure 7. Examples of low light images by various methods when trained on 5% SONY dataset. Note that perceptual quality of images
restored by SMSNet is better than others.
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Figure 8. Examples of low light images restored by various methods when énly 5% of the data has labels. EG stands for EnlightenGAN.
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Figure 9. Top row shows the bar plots showing how frequently models from ensemble produces the best quality image according to SSIM
index. Bottom row has the scatter plots of features obtained from applying t-SNE to learnt features. Plots are for one of the splits from

FUIJI (left) and LOL (right) datasets.



