
Token Pooling in Vision Transformers for Image Classification
Supplementary Material

Dmitrii Marin†, Jen-Hao Rick Chang?, Anurag Ranjan?, Anish Prabhu?

Mohammad Rastegari?, Oncel Tuzel?
†University of Waterloo, ?Apple

jenhao chang@apple.com

A. Weighted clustering algorithms

Weighted K-Means minimizes the following objective w.r.t. F̂ = {f̂1, . . . , f̂K} ⊂ RM :

`(F , F̂) =
∑
fi∈F

min
f̂j∈F̂

wi‖fi − f̂j‖2 (13)

The extension of the K-Means algorithm to the weighted case iterates the following steps:

a(i) ← argmin
j
‖fi − f̂j‖ ∀i ∈ {1, 2, . . . , N}, (14)

f̂j ←
∑N

i=1[a(i) = j]wifi∑N
i=1[a(i) = j]wi

∀j ∈ {1, 2, . . . ,K}., (15)

Weighted K-Medoids optimizes objective (13) under the medoid constraint F̂ ⊂ F :

a(i) ← argmin
j
‖fi − f̂j‖ ∀i ∈ {1, 2, . . . , N}, (16)

n(j) ← argmin
i: z(i)=j

∑
i′: a(i′)=j

‖fi − fi′‖2 ∀j ∈ {1, 2, . . . ,K}, (17)

f̂j ← fn(j). (18)

B. Ablations on clustering initialization
We examine the effect of the cluster center initialization. We compare our default initialization, which uses the tokens

with top-K significance scores as initial cluster centers, with random initialization, which randomly selects tokens as initial
cluster centers. As shown in Figure 7, Token Pooling is robust to the initialization methods.

1 2 3 4
72

74

76

78

80

82

Gflops

ac
cu

ra
cy

(%
)

K-Means
K-Means, rand cluster init
K-Medoids
K-Medoids, rand cluster init

Figure 7: Default initialization vs. random initialization. Our Token Pooling is robust to initialization of clustering algorithms.
The default initialization is top-K w.r.t. significance score, see Algorithm 1.

1



C. Training details & hyper-parameters
A Token Pooling layer has one parameter — the number of the output tokens K (or equivalently the downsampling ratio)

— which is the same as downsampling layers like max or average pooling. For max or average pooling layers, the sizes of
the kernels and strides play the same role as K. We use the method proposed by Goyal et al. [2] to automatically select Ks
of all Token Pooling layers (see below for details). All other hyperparameters are inherited from DeiT [9].

To fairly compare PoWER-BERT and the baseline methods with the proposed Token Pooling, all methods (except convolu-
tion downsampling) use the same target number of tokens for downsampling layers after each transformer block. Specifically,
we run the second stage of the PoWER-BERT training [2] for 30 epochs with various values of the token-selection weight
parameter λ producing a family of models. The single parameter λ controls the overall efficiency of a model, and the numbers
of retained tokens of all Token Pooling layers are selected automatically based on the choice of λ. Each of the resulted mod-
els has a different number of retained tokens at each of its L transformer blocks: K = (K1, . . . ,KL). Appendix G lists all
combinations of automatically determined K. We then finetune these models using the third (last) stage of PoWER-BERT.
Note that we apply the same process for PoWER-BERT, random selection, importance selection, and our Token Pooling, and
we use the same K when comparing these methods.

We find that the DeiT models provided by Touvron et al. [9] are under-fit, and their accuracy improves with additional
training, see Figure 8. After the standard DeiT training, we restart the training. This ensures that downsampling models and
DeiT with a similar number of training steps.

1 2 3 4 5
72

74

76

78

80

82

Gflops

ac
cu

ra
cy

(%
)

DeiT (Ti→ S)
DeiT-Distil (Ti and S)
DeiT-2x (Ti→ S)

Figure 8: This figure shows the results of the pretrained DeiT models provided by Touvron et al. [9] (DeiT) and the DeiT
models trained with our protocol (DeiT-2x). Our training protocal uses the same hyper-parameters provided by Touvron et
al. [9], but after the model is trained, we finetune the model using the same hyper-parameters (i.e., restart the learning rate
schedule). We also show DeiT-Distil results (cited from [9]), which use knowledge distillation.

D. Convolution downsampling (generalized average pooling)
As mentioned in the main paper, we enumerate combinations of layers to insert the convolution downsampling layer. We

use 2x2 convolution with stride 2 — the same operation as the Patch Merging layer used by Swin [5]. To keep the feature
dimensionality of DeiT the same (and evaluate the pure effect of the downsampling layers), the output feature dimensionality
is the same as the input. With 196 tokens in DeiT-S model, we can include no more than 3 convolution downsampling
layers as each layer reduces the number of token by a factor of 4. When using 3 layers at depths l1 < l2 < l3, we restrict
l2 − l1 = l3 − l2. With these constraints, we enumerate all possible downsampling configurations, i.e., 1 and 2 layers and 3
layers satisfying the condition. Each of the combinations produces a model with a different computation-accuracy trade-off,
and we report the Pareto front, i.e., the best accuracy these models achieve at a given flop. See Figure 9.

Note that the convolution downsampling layer is equivalent to the patch-merging layer used by Liu et al. [5], Heo et
al. [3], and Wang et al. [11] (except that we keep the output feature dimension the same to compare fairly with DeiT). It is
also a generalized version of the commonly used average pooling layer (e.g., used by Roy et al. [7]). Average pooling can be
implemented by convolving the feature map with a constant kernel of size n× n containing 1

n2 and subsample (stride) every



1 1.5 2 2.5 3 3.5 4 4.5

Gflops

70

72

74

76

78

80

ac
cu

ra
cy

 (
%

)

Ours (WK-Medoids)

Convolution (best)

Convolution

Figure 9: Results of convolution downsampling

n pixels. By learning its kernel, the convolution downsampling layer is able to find a kernel suitable for the downsampling
and the current task than average pooling.

E. Directly inserting Token Pooling into pretrained transformers
In this section, we directly insert Token Pooling layers into a pre-trained model. While such operation (modifying network

architecture post training) is unusual and typically degrades performance dramatically, this experiment enables us to evaluate
how well Token Pooling preserving information during the downsampling.

Figure 10 shows the results when we directly insert Token Pooling layers (using the same downsampling ratios in Fig-
ure 6b) into a pretrained DeiT-S. As can seen, even though Token Pooling layers are added post training, we still can reduce
a small number of tokens without significant degradation in accuracy. The result indicates that Token Pooling preserves
information that enables the model to retain accuracy during token downsampling.

In Figure 10, we also show the results of an alternative method that better preserve information of pre-trained transformers
(WK-Means, carry and WK-Medoids, carry). Specifically, in addition to outputting K cluster centers, we count the number
of tokens assigned to a cluster center and carry the count when we compute softmax-attention in the next transformer blocks.
This operation preserves the attention weights, and since the models are not trained after inserting Token Pooling layers, it
preserves more information. In practice, we observe that when the models are trained with Token Pooling layers, the carry
operation is not important.

2 2.5 3 3.5 4 4.5
20

40

60

80

·109, Flops

ac
cu

ra
cy

(%
)

DeiT-S
K-Means
WK-Means
WK-Means, carry
K-Medoids
WK-Medoids
WK-Medoids, carry

Figure 10: The figure shows the performance results when we directly insert Token Pooling layers into a pretrained DeiT-S.



1 2 3 4 5

Gflops

66

68

70

72

74

76

78

80

82
ac

cu
ra

cy
 (

%
)

PoWER-BERT, normalized

Ours (WK-Medoids), normalized

(a) α = 1

1 2 3 4 5

Gflops

66

68

70

72

74

76

78

80

82

ac
cu

ra
cy

 (
%

)

Ours (WK-Medoids)

Ours (WK-Medoids), normalized

PoWER-BERT

PoWER-BERT, normalized

(b) Learned α for each layer
Figure 11: Results of models using normalized key and query vectors with (a) α = 1 and (b) learned α in (6). The base
model architecture is DeiT-S.

F. Normalized key and query vectors
Our analysis of softmax-attention in Section 3.3 assumes the query and the key vectors are normalized to have a constant

`2 norm. It has been observed by Kitaev et al. [4] that normalizing key and query vectors does not change the performance
of a transformer. Thus, for all experiments, we train models without the norm normalization. In this section, we verify
this observation by training various DeiT, PoWER-BERT, and Token Pooling with normalized keys and queries. We found
that the scalar α in the softmax attention layer (6) can affect the performance of a transformer with normalized keys and
queries. As can be seen in Figure 11a, setting the scalar α = 1 slightly deteriorates the performance of the model. Instead of
using a fixed α, we let the model learn the α for each layer. As can be seen in Figure 11b, learning α enables the resulting
models to achieve similar cost-accuracy trade-off as the standard (unnormalized) models. With or without the normalization
and the learnable α, the proposed Token Pooling significantly improves the cost-accuracy trade-off of DeiT and outperforms
PoWER-BERT.

G. Ablations of clustering algorithms
Tables 2–5 detail the results of PoWER-BERT and Token Pooling on the DeiT architectures that we tested (DeiT-S, DeiT-

e318, and DeiT-e252). Figure 12 shows the ablation results with different backbone models. Table 2 details the results of
the best cost-accuracy trade-off achieved by the proposed Token Pooling (using K-Medoids and WK-Medoids) and PoWER-
BERT via varying token sparsity and feature dimensionality of DeiT.

Apart from the standard K-Means and K-Medoids, other clustering approaches could be used. Many methods are not
suitable due to efficiency constraints. For example, normalized cut [8] uses expensive spectral methods. One prerequisite of
using K-Means and K-Medoids is the number of clusters, K. While selecting K for each of the layers may be tedious and
difficult, one can choose K via computational budgets and heuristics. In this work, we use the automatic search procedure
proposed by Goyal et al. [2] to determine K, see Appendix C.

Since both K-Means and K-Medoids require specifying the number of clusters K in advance, one may consider using
methods automatically determining K. Nevertheless, such methods typically have other parameters, which are less inter-
pretable than K. For example, mean-shift [1] or quick-shift [10] require specifying the kernel size. From our experience,
determining these parameters is challenging. In addition, since the number of clusters (and hence the number of output
tokens) is determined on the fly during inference, the computational requirement can fluctuate, making deployment of these
models difficult.



0.5 1 1.5 2

Gflops

64

66

68

70

72

74

76

78

ac
cu

ra
cy

 (
%

)

Ours (WK-Medoids)

Ours (K-Medoids)

PoWER-BERT

(a) DeiT-e252 as the base architecture

1 1.5 2 2.5 3

Gflops

70

72

74

76

78

80

ac
cu

ra
cy

 (
%

)

Ours (WK-Medoids)

Ours (K-Medoids)

PoWER-BERT

(b) DeiT-e318 as the base architecture

Figure 12: This figure compares the cost-accuracy curves of Token Pooling with PoWER-BERT using (a) DeiT-e252 and (b)
DeiT-e318 as the base architectures.

DeiT (Ti→ S) PoWER-BERT Token Pooling (K-Medoids) Token Pooling (WK-Medoids)
Gflops Accuracy (%) Gflops Accuracy (%) Gflops Accuracy (%) Gflops Accuracy (%)

- - 0.46 65.0 0.48 68.5 0.48 69.4
- - 0.55 68.0 0.57 70.9 0.57 71.7
- - 0.70 71.7 0.73 73.6 0.73 74.0
- - 0.89 72.0 0.93 74.6 0.93 75.0
- - 0.96 74.8 1.00 75.9 1.00 76.4
- - 1.05 75.4 1.11 76.4 1.11 76.6

1.25 73.9 1.19 76.6 1.25 77.0 1.25 77.2
- - 1.38 77.1 1.46 77.4 1.46 77.6
- - 1.46 77.4 1.52 78.4 1.52 78.9
- - 1.62 78.4 1.68 78.9 1.68 79.2

2.07 77.7 1.81 78.8 1.88 79.3 1.88 79.4
- - 2.11 79.3 2.13 79.9 2.13 80.1
- - 2.27 79.4 2.35 80.1 2.35 80.4
- - 2.52 80.0 2.61 80.5 2.61 80.6

3.21 80.0 2.93 80.6 3.04 80.7 3.04 80.7
4.60 81.2 4.28 81.2 4.44 81.4 4.44 81.2

Table 2: Best cost-accuracy trade-off achieved by PoWER-BERT and the proposed Token Pooling via varying sparsity level
and feature dimensionality.



clustering method Weighting ImageNet Accuracy GFlops

Sparsity level 0: K = [196, 196, 195, 194, 189, 180, 173, 173, 173, 173, 173, 173]

PoWER-BERT N/A 81.2 4.3

K-Means
81.3 4.7 (+0.4)

X 81.1 4.7 (+0.4)

K-Medoids
81.4 4.4 (+0.1)

X 81.2 4.4 (+0.1)

Sparsity level 1: K = [196, 195, 193, 188, 169, 140, 121, 110, 73, 38, 7, 0]

PoWER-BERT N/A 80.6 2.9

K-Means
80.7 3.3 (+0.4)

X 80.8 3.3 (+0.4)

K-Medoids
80.7 3.0 (+0.1)

X 80.7 3.0 (+0.1)

Sparsity level 2: K = [196, 195, 190, 177, 141, 108, 84, 69, 35, 18, 3, 0]

PoWER-BERT N/A 80.0 2.5

K-Means
80.5 2.8 (+0.3)

X 80.5 2.8 (+0.3)

K-Medoids
80.5 2.6 (+0.1)

X 80.6 2.6 (+0.1)

Sparsity level 3: K = [196, 194, 187, 163, 118, 85, 58, 47, 20, 12, 2, 0]

PoWER-BERT N/A 79.4 2.3

K-Means
80.1 2.5 (+0.2)

X 80.4 2.5 (+0.2)

K-Medoids
80.1 2.3 (+0.08)

X 80.4 2.3 (+0.08)

Sparsity level 4: K = [196, 193, 179, 142, 97, 64, 46, 34, 13, 9, 1, 0]

PoWER-BERT N/A 78.8 2.1

K-Means
79.8 2.3 (+0.2)

X 80.0 2.3 (+0.2)

K-Medoids
79.9 2.1 (+0.07)

X 80.1 2.1 (+0.07)

Sparsity level 5: K = [194, 183, 142, 89, 41, 20, 10, 7, 0, 0, 0, 0]

PoWER-BERT N/A 76.2 1.5

K-Means
77.6 1.7 (+0.2)

X 78.1 1.7 (+0.2)

K-Medoids
77.8 1.6 (+0.05)

X 78.1 1.6 (+0.05)

Sparsity level 6: K = [186, 162, 102, 56, 13, 4, 2, 2, 0, 0, 0, 0]

PoWER-BERT N/A 73.3 1.2

K-Means
75.0 1.4 (+0.2)

X 75.6 1.4 (+0.2)

K-Medoids
75.4 1.3 (+0.04)

X 75.7 1.3 (+0.04)

Sparsity level 7: K = [162, 129, 66, 33, 4, 1, 1, 0, 0, 0, 0, 0]

PoWER-BERT N/A 69.6 1.0

K-Means
72.4 1.1 (+0.1)

X 73.0 1.1 (+0.1)

K-Medoids
72.3 1.0 (+0.03)

X 73.0 1.0 (+0.03)

Table 3: Results of applying Token Pooling and PoWER-BERT on DeiT-S model. The models are grouped by K described
in Appendix C. The integer list denotes the maximal number of tokens retained after each transformer block. These numbers
do not take into account the classification token, which is always retained. Thus, “0” means that only the classification token
remains. Additional flops (denoted by the parentheses) are due to clustering.



clustering method Weighting ImageNet Accuracy GFlops

Sparsity level 0: K = [196, 196, 196, 194, 192, 184, 181, 181, 170, 170, 170, 170]

PoWER-BERT N/A 80.1 3.0

K-Medoids
80.1 3.1 (+0.1)

X 80.0 3.1 (+0.1)

Sparsity level 1: K = [196, 195, 195, 190, 171, 147, 132, 122, 66, 43, 15, 0]

PoWER-BERT N/A 79.3 2.1

K-Medoids
79.6 2.2 (+0.1)

X 79.7 2.2 (+0.1)

Sparsity level 2: K = [196, 195, 193, 180, 143, 109, 92, 77, 40, 21, 4, 0]

PoWER-BERT N/A 78.8 1.8

K-Medoids
79.3 1.9 (+0.09)

X 79.4 1.9 (+0.09)

Sparsity level 3: K = [196, 195, 190, 165, 119, 84, 65, 50, 26, 14, 3, 0]

PoWER-BERT N/A 78.3 1.6

K-Medoids
78.9 1.7 (+0.07)

X 79.2 1.7 (+0.07)

Sparsity level 4: K = [196, 194, 184, 149, 97, 65, 47, 33, 12, 9, 2, 0]

PoWER-BERT N/A 77.4 1.5

K-Medoids
78.4 1.5 (+0.06)

X 78.9 1.5 (+0.06)

Sparsity level 5: K = [196, 186, 153, 93, 40, 15, 12, 9, 0, 0, 0, 0]

PoWER-BERT N/A 74.5 1.1

K-Medoids
76.2 1.1 (+0.05)

X 76.8 1.1 (+0.05)

Sparsity level 6: K = [193, 173, 109, 52, 16, 4, 4, 4, 0, 0, 0, 0]

PoWER-BERT N/A 72.0 0.89

K-Medoids
74.6 0.93 (+0.04)

X 75.0 0.93 (+0.04)

Sparsity level 7: K = [183, 145, 80, 33, 5, 1, 1, 2, 0, 0, 0, 0]

PoWER-BERT N/A 69.4 0.75

K-Medoids
72.1 0.78 (+0.03)

X 72.6 0.78 (+0.03)

Table 4: Results of applying Token Pooling and PoWER-BERT on DeiT-e318 model. The models are grouped by K
described in Appendix C. The integer list denotes the maximal number of tokens retained after each transformer block.
These numbers do not take into account the classification token, which is always retained. Thus, “0” means that only the
classification token remains. Additional flops (denoted by the parentheses) are due to clustering.



clustering method Weighting ImageNet Accuracy GFlops

Sparsity level 0: K = [196, 196, 196, 195, 193, 189, 177, 177, 177, 177, 177, 177]

PoWER-BERT N/A 78.0 2.0

K-Medoids
77.7 2.1 (+0.1)

X 77.9 2.1 (+0.1)

Sparsity level 1: K = [196, 196, 195, 189, 176, 161, 123, 122, 76, 48, 17, 0]

PoWER-BERT N/A 77.1 1.4

K-Medoids
77.4 1.5 (+0.07)

X 77.6 1.5 (+0.07)

Sparsity level 2: K = [196, 196, 193, 179, 154, 123, 88, 79, 39, 22, 5, 0],

PoWER-BERT N/A 76.6 1.2

K-Medoids
77.0 1.3 (+0.06)

X 77.2 1.3 (+0.06)

Sparsity level 3: K = [196, 195, 188, 167, 131, 96, 63, 52, 13, 11, 2, 0],

PoWER-BERT N/A 75.4 1.1

K-Medoids
76.4 1.1 (+0.05)

X 76.6 1.1 (+0.05)

Sparsity level 4: K = [196, 194, 181, 147, 111, 75, 48, 36, 5, 7, 2, 0]

PoWER-BERT N/A 74.8 0.96

K-Medoids
75.9 1.0 (+0.04)

X 76.4 1.0 (+0.04)

Sparsity level 5: K = [196, 187, 129, 88, 54, 20, 10, 10, 0, 1, 0, 0]

PoWER-BERT N/A 71.7 0.70

K-Medoids
73.6 0.73 (+0.03)

X 74.0 0.73 (+0.03)

Sparsity level 6: K = [194, 163, 83, 44, 22, 6, 1, 3, 0, 0, 0, 0]

PoWER-BERT N/A 68.0 0.55

K-Medoids
70.9 0.57 (+0.02)

X 71.7 0.57 (+0.02)

Sparsity level 7: K = [188, 122, 58, 28, 12, 2, 0, 2, 0, 0, 0, 0]

PoWER-BERT N/A 65.0 0.46

K-Medoids
68.5 0.48 (+0.02)

X 69.4 0.48 (+0.02)

Table 5: Results of applying Token Pooling and PoWER-BERT on DeiT-e252 model. The models are grouped by K
described in Appendix C. The integer list denotes the maximal number of tokens retained after each transformer block.
These numbers do not take into account the classification token, which is always retained. Thus, “0” means that only the
classification token remains. Additional flops (denoted by the parentheses) are due to clustering.



H. Throughput
Throughput reflects the actual speed during inference time, and it is often measured by the number of processed images

per second (fps). As a result, the value of throughput highly depends on the specific hardware, implementation quality, and
the workload and the state (e.g., temperature) of the machines [6]. Since it is usually difficult to control all these factors
to have a fair comparison with other papers, in the main paper, we choose to report the theoretical computational cost (i.e.,
flops) that is known to be highly correlated with the energy consumption on device.

In Figure 13, we provide the throughput of our models, served as a reference on how our models actually perform given
our implementation and the type of GPU used. Note that our PyTorch implementation of the clustering algorithms can be
significantly improved, for example, via implementing as a CUDA kernel. To determine the throughput, we run the model
inference several times with different batch sizes. We report the average throughput of 30 different runs using the best batch
size. As can be seen, with the same accuracy, using Token Pooling increases the throughput of DeiT-e318 by 25% (1640 vs.
1310 fps), of DeiT-e252 by 22% (2190 vs. 1791 fps), and of DeiT-Ti by 14% (3220 vs. 2834 fps).

Figure 13: Throughput of our PyTorch implementation. Note that our implementation has not been optimized for the through-
put. The throughput is measured in frames (images) per second (fps). These numbers are measured on a single Nvidia V100
GPU. As can be seen, despite our non-optimized code, Token Pooling significantly improves both the flops (see Figure 1a)
and throughput of DeiT models.

References
[1] Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

17(8):790–799, 1995.
[2] Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sabharwal, and Ashish Verma. PoWER-

BERT: Accelerating BERT inference via progressive word-vector elimination. In International Conference on Machine Learning
(ICML), pages 3690–3699, 2020.

[3] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh. Rethinking spatial dimensions of
vision transformers. In IEEE International Conference on Computer Vision (ICCV), 2021.

[4] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In International Conference on Learning
Representations (ICLR), 2020.

[5] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical
vision transformer using shifted windows, October 2021.

[6] Danny Price, Ben Barsdell, Lincoln Greenhill, Mike Clark, and Ron Babich. Fire and ice: How temperature affects gpu performance.
In NVIDIA GTC. 2014.

[7] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse attention with routing trans-
formers. Transactions of the Association for Computational Linguistics, 9:53–68, 2021.

[8] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 22(8):888–905, 2000.



[9] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient
image transformers & distillation through attention. pages 10347–10357, 2021.

[10] Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking. In European Conference on Computer Vision
(ECCV), pages 705–718, 2008.

[11] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision
transformer: A versatile backbone for dense prediction without convolutions. In IEEE International Conference on Computer Vision
(ICCV), pages 568–578, October 2021.


