
Supplementary material
BrightFlow: Brightness-Changes-Aware Unsupervised Learning of Optical Flow

1. Soft census loss
Let A, B be two same-size greyscale images, p a pixel

coordinate, N (p) its neighbors and ρ the soft census loss.

ρ(A,B)(p) =(
∑

q∈N (p)

H{C(A(p)−A(q))

− C(B(p)−B(q))}+ ε)α
(1)

being H(z) = z2/(z2 + ε) the soft Hamming dis-
tance and C(z) = z/

√
ϵ+ z2 the soft census transform.

The neighborhood we consider is a 7-pixel-wide patch,
α = 0.4, ε = 0.1 and ϵ = 0.81. This implementation is the
same as DDFlow [3], UFlow [2] and SMURF [4].

2. Pseudo-Code of BrightFlow

1 # epochs : number o f epochs
2 # d a t a l o a d e r : l o a d e r o f b a t c h e s
3 # I 1 a u g and I 2 a u g : augmented v e r s i o n s o f I1 and I2
4 # OFN: o p t i c a l f low ne twork
5 # BCN: b r i g h t n e s s c o r r e c t i o n ne twork
6 # warp : warp ing f u n c t i o n
7 # g e t o c c : compute t h e o c c l u s i o n s maps
8 # Census : Census l o s s
9 # c rop : c rop t h e c e n t e r o f a t e n s o r

10 # s m o o t h n e s s l o s s : a p p l y t h e smoo thness l o s s f o r m u l a
11

12 f o r i i n r a n g e ( epochs ) :
13 f o r ( I1 , I2 , I1 aug , I 2 a u g ) i n d a t a l o a d e r :
14 F1 aug , F2 aug = OFN( I1 aug , I 2 a u g )
15

16 # P h o t o m e t r i c l o s s e s
17 O1 , O2 = g e t o c c ( F1 aug , F2 aug )
18

19 I 1 a u g h a t = warp ( I2 aug , F1 aug )
20 I 2 a u g h a t = warp ( I1 aug , F2 aug )
21

22 C1 aug = BCN( I1 aug , I 1 a u g h a t . d e t a c h ( ) , O1 )
23 C2 aug = BCN( I2 aug , I 2 a u g h a t . d e t a c h ( ) , O2 )
24

25 I 1 a u g h a t c = warp ( I 2 a u g + C2 aug * O2 , F1 aug .
d e t a c h ( ) )

26 I 2 a u g h a t c = warp ( I 1 a u g + C1 aug * O1 , F2 aug .
d e t a c h ( ) )

27

28 L ph c1 = ( abs ( I 1 a u g − I 1 a u g h a t c ) * O1 ) . sum ( ) /
O1 . sum ( )

29 L ph c2 = ( abs ( I 2 a u g − I 2 a u g h a t c ) * O2 ) . sum ( ) /
O2 . sum ( )

30

31 I 1 h a t = warp ( I2 , F1 aug )
32 I 2 h a t = warp ( I1 , F2 aug )
33

34 wi th n o g r a d ( ) :
35 C1 = BCN( I1 , I 1 h a t , O1 )
36 C2 = BCN( I2 , I 2 h a t , O2 )
37

38 I 1 h a t c = warp ( I2 + C2 * O2 , F1 aug )
39 I 2 h a t c = warp ( I1 + C1 * O1 , F2 aug )
40

41 M1 = abs ( I1 − I 1 h a t c ) <= abs ( I1 − I 1 h a t )
42 M2 = abs ( I2 − I 2 h a t c ) <= abs ( I2 − I 2 h a t )
43

44 L p h f 1 = ( Census ( I1 , M1 * I 1 h a t c + ˜M1 * I 1 h a t )
* O1 ) . sum ( ) / O1 . sum ( )

45 L p h f 2 = ( Census ( I2 , M2 * I 2 h a t c + ˜M2 * I 2 h a t )
* O2 ) . sum ( ) / O2 . sum ( )

46

47 # Smoothness l o s s
48 L sm1 = s m o o t h n e s s l o s s ( I1 , F1 aug )
49 L sm2 = s m o o t h n e s s l o s s ( I2 , F2 aug )
50

51 # S e l f − s u p e r v i s e d l o s s
52 F 1 t e a c h e r , F 2 t e a c h e r = OFN( I1 , I2 )
53 F 1 s t u d e n t , F 2 s t u d e n t = OFN( c rop ( I 1 a u g ) , c rop (

I 2 a u g ) )
54 L s e l f 1 = C h a r b o n n i e r ( c rop ( F 1 t e a c h e r ) , F 1 s t u d e n t )
55 L s e l f 2 = C h a r b o n n i e r ( c rop ( F 2 t e a c h e r ) , F 2 s t u d e n t )
56

57 l o s s = gamma ph * ( L p h f 1 + L p h f 1 + gamma ph c *
( L ph c1 + L ph c2 ) ) + gamma sm * ( L sm1 + L sm2 ) +

gamma se l f * ( L s e l f 1 + L s e l f 2 )
58 l o s s . backward ( )
59

60 u p d a t e (OFN. params )
61 u p d a t e (BCN. params )

Algorithm 1: Pseudo-Code of BrightFlow in a pytorch style

3. Supplementary experiments
3.1. Checking what the brightness correction learns

These experiments aim to check that what the brightness
correction network learn is:

1. not the trivial solution mentioned in section 3.2.1 of
the paper,

2. nor equivalent to a mechanism that filters out outputs
of the census loss beyond a certain threshold.

To test these hypotheses, we implemented the following ex-
periments:

1. training RAFT with BrightFlow but using the trivial
solution of the photometric loss instead of the outputs
of the brightness correction network,



τ
Sintel clean Sintel final

EPE ER EPE ER
RAFT 3.93 8.24 3.97 11.22
Exp. 1 3.40 8.22 3.95 10.49

Exp. 2
2 3.98 10.64 4.23 13.78
3 3.79 8.38 3.95 11.34
4 3.56 7.84 4.05 11.19

Exp. 3
2 4.16 10.78 4.27 13.91
3 3.85 8.08 3.75 10.75
4 4.35 8.49 3.82 10.91

RAFT+BrightFlow 3.25 7.49 3.33 10.26

Table 1: Comparison of BrightFlow against our RAFT [5]
baseline with three different heuristics: Exp. 1: replacing
the brightness correction network predictions with the triv-
ial solution mentioned in section 3.2.1 of the article, Exp.
2: using a thresholded soft census loss and Exp. 3: combin-
ing both previous experiments

2. training RAFT without BrightFlow but using a thresh-
olded soft census loss that filters out errors beyond a
certain threshold,

3. both the previous experiments at the same time.

In the thresholded soft census loss, the soft Hamming dis-
tance is replaced by a thresholded soft Hamming distance
Hτ (z) = H(z) × 1{H(z)≤τ}, being τ the threshold. The
codomain of the thresholded soft census loss with our hy-
perparameters and 7 pixels wide patches being in the inter-
val [0.40, 4.66], we have tried 2, 3, 4 as values for τ . All
the experiments have been conducted on Sintel [1] with
RAFT architecture [5]. Results (see table 1) show that Exp.
1 overtakes the baseline on Sintel clean and final. About
Exp. 2 and 3, whatever the threshold, none of the experi-
ments exceeds all the baselines at once. BrightFlow perfor-
mance remains better than Exp. 1, Exp. 2 and Exp. 3. We
deduce that what BrightFlow learns cannot be restricted
to a threshold to reduce outliers nor to the trivial solution.
Interestingly, if one does not have enough computing re-
sources to train the entire BrightFlow method, one can still
use the trivial solution instead of the brightness correction
network to get a performance gain but not as much as with
the whole BrightFlow.

3.2. Impact of data augmentation on performance

Results of experiments with and without data augmen-
tation are available table 2. Whether BrightFlow is used
or not, it demonstrates the importance of using photometric
data augmentation.

Data
aug.

Sintel clean Sintel final
EPE ER EPE ER

RAFT 3.99 8.76 4.40 12.03
✓ 3.93 8.24 3.97 11.22

RAFT+BrightFlow 3.59 8.18 3.77 11.29
✓ 3.25 7.49 3.33 10.26

Table 2: Impact of photometric data augmentation on per-
formance

4. Qualitative results on Sintel
Figure 1 shows qualitative results on Sintel [1].
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Figure 1: Qualitative results for RAFT trained with or without BrightFlow on Sintel (best viewed in color). For top to bottom,
images corresponds to I1, I2, I2 +C2, C2, F1 predicted by RAFT trained without BrightFlow and then with BrightFlow. We
notice that BrightFlow enables a more consistent object-wise optical flow, especially in case of strong brightness changes ((2),
(3), (4)). It also prevents artifacts in the optical flow that come from shadows (1). However, this induces the loss of some small
details that the optical flow network learned to ignore due to some incorrect corrections that have not been filtered out (2).


