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In this Supplementary Material, we provide additional
experiments to demonstrate the effect of pretrained detector
backbone, i.e. with/without COCO-pretrained weights, on
the adaptation performance using our proposed ConfMix.
Moreover, we also justify key hyperparameter choices in
the implementation, including the confidence threshold Cth

to filter the detections on top of non-maximum suppression,
and α that is used to scale the impact of the current iteration
to the total number of iterations for the calculation of the
shifting weight δ. Consistently with the main manuscript,
we conduct the ablation study on the Sim10K → Cityscapes
setup.
Does backbone initialisation negate the effect of domain
adaptation? As there are works using ImageNet-pretrained
networks [5, 2, 9, 10, 3, 12, 13, 4, 1] and works that do
not specify whether they are pretrained or not [11, 8, 7, 6],
we are motivated to examine how the initialisation of our
backbone affects the proposed adaptation strategy. There-
fore, we experiment with the initialisation of the back-
bone with random weights. Compared to the setting de-
scribed in the main manuscript, we only vary the confi-
dence threshold Cth used to filter the detections on top
of the non-maximum suppression from 0.25 to 0.3 for the
random weight setting, in order to account for less reli-
able predictions at the initial training phase. As shown in
Table 1, with random weights initialisation, Source only,
ConfMix and Oracle achieve lower performance than their
corresponding ones with the COCO pretrained weights.
Moreover, we notice that ConfMix with random weights
obtains a mAP gain of +12.3% and +28.4% compared
to its Source-only counterpart, on Sim10K→Cityscapes
and KITTI→Cityscapes, respectively. While with COCO-
pretrained weights, ConfMix achieves a mAP gain of
+6.8% and +12.3% compared to its Source-only counter-
part, on Sim10K→Cityscapes and KITTI→Cityscapes, re-
spectively. This shows that the adaptation of ConfMix is
more effective when the backbone is not pretrained, al-
though its general detection performance on the target do-
main is bounded by the Oracle’s performance.
How does Cth for filtering out detections affect adap-

Sim10K→ KITTI→
Cityscapes Cityscapes

Method Detector Backbone Pretrained mAP mAP
Source only YOLOv5 CSP-Darknet53 No 33.9 21.7

ConfMix (Ours) YOLOv5 CSP-Darknet53 No 46.2 50.1
Oracle YOLOv5 CSP-Darknet53 No 64.1 64.1

Source only YOLOv5 CSP-Darknet53 COCO 49.5 39.9
ConfMix (Ours) YOLOv5 CSP-Darknet53 COCO 56.3 52.2

Oracle YOLOv5 CSP-Darknet53 COCO 70.3 70.3

Table 1. Quantitative results (mAP) for Sim10K/KITTI →
Cityscapes benchmark.

Cth 0.1 0.25 0.5 0.7
mAP 42.1 47.7 52.7 41.8

Table 2. Target detection accuracy with different confidence
thresholds Cth.

tation? We experiment with varying confidence threshold
Cth, i.e. 0.1, 0.25 (our setting), 0.5, and 0.7, to filter the de-
tections on top of non-maximum suppression. The weight
used to balance the consistency loss γ = 1 is fixed through-
out this experiment. As shown in Table 2, using Cth = 0.5
leads to the best adaptation performance, with a mAP im-
provement of +10.6% and +10.9% compared to Cth = 0.1
and Cth = 0.7, respectively. While the use of low values for
Cth leads the model to keep erroneous pseudo detections,
the use of high values filters out those pseudo detections
that are useful for the model to learn the target features.

However, the use of Cth is closely related to Cγ
th, which

is the confidence threshold used to calculate the reliability
of pseudo detections γ, defined as the ratio of valid de-
tections after non-maximum suppression with confidence
greater than Cγ

th. We therefore vary Cγ
th from 0.4 to 0.9 un-

der Cth = 0.25, and from 0.6 to 0.9 under Cth = 0.5 (note
that the value of Cγ

th should be larger than Cth to function
meaningfully). From the results reported in Table 3, we can
see that the best performance is given by the combination
of Cth = 0.25 and Cγ

th = 0.5, which is our experimental
setting reported in the main manuscript.
How does α for the confidence transition affect adapta-
tion? We analyse the effect of the hyperparameter α used
to calculate the shifting weight δ for the smooth transition
from Cdet to Ccomb during training. As illustrated in Fig-



Cth 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5
Cγ

th 0.4 0.5 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9
mAP 55.1 56.3 55.3 56.0 55.6 53.3 55.0 54.4 53.8 51.5

Table 3. Target detection accuracy with different confidence
thresholds Cγ

th under Cth = 0.25 and Cth = 0.5.

Figure 1. Visualisation of the evolution of δ throughout the training
iterations with different values of α. Note that δ = r is the linear
function already ablated in the main manuscript.

α 1 3 5 10
mAP 55.5 55.7 56.3 55.4

Table 4. Target detection accuracy with different confidence tran-
sition magnitudes.

ure 1, a lower value of α gives a greater importance to the
less strict confidence Cdet, while a higher value of α gives
a greater importance to the stricter confidence Ccomb. As
shown in Table 4, using α = 5 leads to the best mAP perfor-
mance, with an improvement of +0.8% compared to α = 1,
+0.6% compared to α = 3, and +0.9% compared to α = 10.
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