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1. Implementation Details
In the following, we explain our data generation pro-

cesses, the implementation of our maximum likelihood-
based learning algorithm, and the training procedure of our
neural network classifier in detail.

1.1. Maximum Likelihood Analysis

Dataset generation. According to the coordinate system
definition shown in Figure 5(a), we have the following con-
figurations and variations in the face dataset for each of the
M = 16 identities. Hereafter, with a slight abuse of notation,
we denote a point in the 3D-space by (x, y, z), where the
unit of measure is meters.

• We fix the position of the faces at (1.65, 0.0, 1.15).

• We vary the facial expressions by sampling the ex-
pression coefficients from N (0kexp

, c Ikexp
), which

changes the face shape according to Equation (1). Here,
c controls the amount of variations, which we set as
c = 0.5.

• We rotate the faces around y– and z–axes, which we
refer to as elevation and azimuth, respectively. We
sample both elevation and azimuth uniformly from
[−15◦, 15◦].

• We simulate a white spotlight directed to the face. We
sample its location uniformly along the line connecting
(0.15,−0.5, 1.50) and (0.15, 0.5, 1.50).

We render face images of resolution 128× 128 with Mit-
suba2 [3] using 100 samples per pixel. Rendering one image
takes ∼100 miliseconds on NVIDIA GeForce RTX 2080 Ti
GPU. We simulate a rectangular occluder with a 512× 512
image that contains a square with a diagonal length of 400
pixels. After proper scaling in pixel values to ensure the
conservation of energy [1, 4], we convolve this image with
the rendered face images to obtain the shadow images, which
we downsample to 128 × 128 resolution. Hence, we have

n = 1282 = 16384, i.e, each observation in the dataset is a
16384-dimensional vector.

Experiments. We analyze the ML algorithm for different
SNR levels ranging from −35 dB to 80 dB with step size 5
dB. For each data point, running the algorithm for M = 16
identities takes ∼150 minutes. For each data point shown in
Figure 6, we compute the accuracies by averaging the results
over 5 independent trials.

A particular setting that requires careful attention is when
the noise variance σ2 is sufficiently small, which makes the
covariance matrices {Qm} nearly singular. This makes the
“tail” eigenvalues of the sample covariance matrix Q̂m close
to 0, causing numerical instabilities during inversion. To
resolve this, if the estimated noise variance σ̂2 drops below
some chosen threshold σ2

th, we work with the pseudoinverse
of the covariance matrix as (Q̂m)−1 ≜ Um(Λm)+(Um)T

where (Λm)+ ≜ diag(1/λm
1 , . . . , 1/λm

p , 0, . . . , 0). Here,
λm
p is the smallest eigenvalue larger than a refined thresh-

old σ̄2
th ≜ max(σ2

th, kσ̂
2), which is heuristically chosen to

ensure the continuity of the algorithm between numerically
singular and nonsingular covariance matrix regimes. In our
experiments, we set σ2

th = 10−6 and k = 5.

1.2. Neural Network Classifier

Dataset Generation. According to the same coordinate
system definition, we have the following configurations and
variations in the synthetic data, which we use to train our
neural network classifier.

• As before, we vary the facial expressions by sampling
the expression coefficients from N (0kexp , c Ikexp) with
c = 0.5.

• We rotate the faces around y– and z–axes, and sample
both elevation and azimuth uniformly from [−30◦, 30◦].
Here, positive angles indicate clockwise rotations with
respect to the xz– and xy–planes.

• We sample the position of the face uniformly along the
line connecting (1.55, 0.0, 1.15) and (1.75, 0.0, 1.15).



That is, face position varies along the x–axis as vari-
ations in other axes are accounted for in the data aug-
mentation step, where the final images are randomly
cropped.

• We simulate a white spotlight directed to the face. We
sample its location uniformly along the line connecting
(0.15,−1.0, 1.50) and (0.15, 1.0, 1.50).

• Occluders are located 0.7 meters from the wall and
situated on the ground, where we measure the distance
from the center of mass of the occluder.

Training details. We train our classification network with
the synthetic data for 30 epochs, using cross entropy loss
and Adam optimizer [2] with a learning rate of 0.0001. We
augment the training data by flipping the images randomly,
resizing them to 280×280 resolution and randomly cropping
a 224 × 224 patch from these images. At test time, we
resize the images to 280 × 280 resolution and center-crop
the 224× 224 patch from them. In our experiments, we pick
the epoch with the highest test accuracy, and use the network
at that epoch as our baseline, on which we apply domain
adaptation by updating the batch normalization statistics.

2. Fundamental Limitations

The performance of identity classification systems from
shadows (like the one that we present in this work) is funda-
mentally influenced by several factors such as the similarities
between identities of interest; the amount of variations cov-
ered in head poses, facial expressions, lighting conditions,
occluding objects; and other less trivial factors.

As an illustrative example, it is expected that the faces
under extreme head poses and lighting conditions are more
likely to be classified incorrectly. To support this, we in-
vestigate the effect of the face appearance on the results
by analyzing the impact of the head pose and light source
location on the predictions. We illustrate our findings in
Figure 1, where we show elevation-azimuth and light source
position-azimuth plots for correctly and incorrectly classi-
fied examples. In the left plot, we observe that the elevation
has an evident impact on classification performance, where
faces with higher elevation are more likely to be misclassi-
fied. This can be explained by our scene geometry shown
in Figure 5(a), where a more direct view of the face is re-
flected on the wall when the elevation is low. Taking the
averages over all samples shown in the plot, incorrectly clas-
sified examples have an average elevation of +2.83 degrees
whereas correctly classified examples have an average of
−6.73 degrees. In the right plot, we observe a positive cor-
relation (a Pearson correlation of 0.22) between the light
source position (measured along the y-axis) and the azimuth
for correctly classified examples, for which the faces are

Figure 1: Correctly and incorrectly classified examples de-
pending on azimuth, elevation and light source position. We
observe that faces with lower elevations and less cast shad-
ows are more likely to be classified correctly.

illuminated with lower incidence angles. That is, faces with
less cast shadows are more likely to predicted correctly.
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