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In this supplementary material, we provide additional information for further understanding of our method:
 Section 1 provides the implementation details.
 Section 2 explains the detailed structure of the feature extraction module.
* Section 3 shows the results of different alternatives to the patch distribution creation method.
» Section 4 analyzed the level of consistency between the predicted heatmaps and patch distributions.
* Section 5 shows the comparison between our model and the VideoAtt model both with and without depth input.

¢ Section 6 shows some example failure cases of our model.

1. Implementation Details

In all our experiments, all input images are resized to 224 x 224. Both the scene backbone and head backbone are ResNet-
50 [5] followed by an additional residual layer and average pooling layer for dimensionality reduction. The output feature
dimensions from both backbones are 1024 x 7 x 7. Same with the VideoAtt model [2], the head backbone is initialized with
weights pretrained on the Eyediap dataset [4], and the scene backbone is initialized with pretrained weights on the Places
dataset [12]. The encoder has two convolutional layers with kernel sizes of 1 x 1, which reduce the channels from 2048
to 512. Therefore, the number of patch tokens is 7 x 7+ 1 = 50. We set 0 = 3 for generating the ground truth heatmap
following the default setting of previous models [7, 2].

As the procedure used in VideoAtt [2] and DualAtt [3], the model is first trained on the GazeFollow dataset until conver-
gence, and then finetuned on the VideoAttentionTarget dataset. Adam [6] was used to optimize the model with a learning
rate of 2.5e-4, which is decreased with a decay factor of 0.2 at the 25th, 31st, and 40th epochs on the GazeFollow dataset.
For finetuning on the VideoAttentionTarget dataset, we used a 5-frame sequence as one sample. The weights until the patch
attention module are frozen, and the rest of the network is trained with a learning rate of le-4, with a decay factor of 0.5 at
the 3rd and 6th epochs. The batch sizes for training on GazeFollow and VideoAttentionTarget are 80 and 16 respectively.

2. Structure of the Feature Extraction Module

The structure of the feature extraction module is shown in Figure 1. We leverage the feature extraction component of
the VideoAtt model [2] for feature extraction, with some small modifications. The feature extraction module consists of
two branches: a scene branch and a head branch. In the scene branch, the scene backbone F(-), takes the scene image
I € R3>*HoxWo  the binary head position mask P € {0, 1}#0*Wo_and a normalized depth map D € [0, 1]H#o*Wo as input,
and output the scene feature f, € RE*H*W  We leveraged an additional depth map as input according to the insight from
the DualAtt model [3] to incorporate scene depth information, which is computed with an off-the-shelf monocular depth
estimation model [9]. The head backbone F7,(-) takes the head crop of the person H € R3*oxWo a5 input, and output the
head feature f, € RE*H*W  The average pooled head feature is concatenated with the downsampled head mask and the
depth map and fed into an attention layer to generate a spatial attention map M, € R7*W  which is multiplied with the
scene feature and concatenated with the face feature:

fcat:[Ms®f57fh]; (1)
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Figure 1: Structure of the feature extraction module. ® indicates element-wise multiplication. Please see text for details.
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where [+, -] denotes concatenation operation, and ® denotes element-wise multiplication on each channel in f. The Attention
layer is a fully connected layer mapping from the dimension of the concatenated feature to the size of H x W. The VideoAtt
model uses two separate encoders for the heatmap prediction and in/out prediction branch after f.,;. In contrast, we used a
single encoder with two convolutional layers to extract shared feature encoding fe,. € RC*#*W  as we expect the PDP
task to benefit the learning of the shared feature by merging the two subtasks.

3. Ablations of the Ground Truth Patch Distribution Creation Method

In Table 1 we provide the results of ablations of the ground truth patch distribution creation method. First, we tested
choosing different numbers of patches for the patch-level gaze distribution. As the number of patches corresponds to the
number of tokens in f., after the feature extraction module, we only tested in the scale of 2 (4 x 4 and 14 x 14) for ease
of implementation. Setting the patch number to 4 X 4 has a large drop in performance on GazeFollow, possibly because
the overly coarse scale feature encodings make the target estimation in finer grain difficult. When using a patch number of
14 x 14, despite lower drop in performance on GazeFollow, the model performance on VideoAttentionTarget drops obviously.
We infer that this is because when training on VideoAttentionTarget (which has lots of outside cases), the much larger number
of inside tokens (4 times of 7 x 7) make the patch distribution prediction difficult when combined with the outside token.

GazeFollow VideoAttentionTarget

Ll AUC 1 Dist. | In frame Out of frame

Avg. Min. AUCT Dist] AP 71
Patch: 4 x 4 0921 0.129 0.071 0911 0.110 0.897
Patch: 14 x 14 0.930 0.127 0.067 0.908 0.113 0.892
MaxPool — AvgPool  0.931 0.124 0.066 0913  0.112 0.903
One-hot 0925 0.128 0.071 0903 0.110 0.884
Ours 0934 0.123 0.065 0917 0.109 0.908

Table 1: Ablations of Patch Distribution Creation Method

We also trained the model using average pooling instead of max pooling to get the ground truth patch distribution. The
model still shows good performance but with a slight drop in all metrics. Finally, replacing our PDP task with the one-
hot patch classification as in [11] caused a significant drop in performance, showing little improvement compared to the
VideoAtt_depth model. In Figure 2, we also visualized the distributions generated by different alternatives from one sampled
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Figure 2: Visualizations of patch distributions generated in different ways from a sampled ground truth annotation (blue) on
an example image in the GazeFollow test set. Annotations from other annotators are visualized in red. In the case of an
annotation point being close to the patch boundary, the one-hot design simply regards the neighboring patches as unattended,
while our max pooling method can generate much better distribution with high response in different patches, encouraging the
model to predict multi-modal heatmaps in inference.

annotation (blue) on an example image in the GazeFollow test set. We assume in training, only the sampled annotation is
available. It can be seen that the one-hot generation method assigns a hard label of 1 for the specific patch in which the
annotated point is located, which is unimodal and cannot cover the adjacent patches if the target is located close to the patch
boundaries. This limits the model’s capability to predict multi-modal heatmaps. When discretizing the ground truth heatmap
with average pooling, a smoother patch distribution can be obtained. However, the patch where the point is located still
has a much higher response than the right neighboring patches, despite the right patches being very close to the point. Our
method of max pooling generates the distribution that aligns well with the group-level human annotations by creating higher
confidences in multiple patches, showing the best potential to make the model generate multi-modal outputs.

4. Consistency between the Heatmap and Patch Distribution Predictions

As mentioned in the main paper, we used PDP as a regularization method for heatmap prediction, and the predicted
heatmap is used as the final output for the target prediction task if the target is located inside the image. However, after
visualizing the outputs of our model as in Figure 6 in the main paper, we found high consistency between the predicted
heatmaps and the patch distribution. To further investigate the level of consistency between the predictions, we created patch
distributions from the predicted heatmaps using our method for creating the ground truth patch distribution from the ground
truth heatmap. We call this created patch distribution as “Patch Distribution from Predicted Heatmap” (PDPH). We computed
the similarities and distances between the patch distribution predicted from the patch prediction head and PDPH from the
heatmap prediction head on the test set of GazeFollow and VideoAttentionTarget. We selected the Bhattacharyya coefficient
[1] and the Jensen-Shannon (JS) divergence [8] as the evaluation metrics due to their suitability for computing similarity
or distances between distributions. Note that we used JS divergence here instead of KL divergence due to its symmetrical
property as we do not have ‘ground truth’ patch distribution here.

As shown in Table 2, the Bhattacharyya coefficients show very high value on both datasets while the values of JS diver-
gence are very low. This high consistency between the outputs further demonstrates that our model design and the ground
truth patch distribution creation method can regularize the heatmap prediction by acting on the common feature embedding
before the prediction heads.



Dataset Bhat. Coef. T JS Div. |

GazeFollow 0.976 0.142
VideoAttentionTarget 0.971 0.158

Table 2: Analysis of Consistencies between Patch and Heatmap Predictions.

5. Model Performance with and without Depth

In Figure 3, we visualize the outputs of our model and VideoAtt model [2] with and without a depth map as input, to get
a better understanding of the effect of the patch distribution prediction (PDP) method and the depth information. Our model
can generate heatmap predictions better aligned with human annotations compared to the VideoAtt model, both with and
without a depth map as input. This shows that the PDP task can regularize the heatmap regression task irrespective of depth
information. However, without a depth map as input, it becomes more difficult for our model to predict the perfect target
location. As shown in the figure, our model may predict heatmap confidence on objects inconsistent with human gaze in the
depth channel (rows 1 and 4), or fail to predict on some potential gazed objects with confidence (rows 3 and 4). The depth
map gives the model a much better understanding of the scene structure, making it easier for the model to infer the potential
gazed objects.

6. Example Failure Cases

Figure 4 shows some example failure cases of our model on the GazeFollow [10] and VideoAttentionTarget [2] datasets.
Our model sometimes predicts the gaze target incorrectly when the person has a subtle eye orientation that is inconsistent with
the head pose, or predicts more confidently a person’s head instead of the actual target (row 1 and row 3). This phenomenon
may be attributed to the dataset statistics that the gaze target is located on a person’s head in a large number of cases. In
addition, our model only takes the cropped head without extracting the cropped eye region as input, which makes it easier
to employ the model but sacrifices accuracy to some extent. We would like to make our model easier to be applied to most
in-the-wild data, without using a complex pre-processing step to crop the eye images, as in the Dual Att model[3].

In some other circumstances, our model predicts multiple clusters due to the uncertainty of the input, but the predicted
target determined from the maximum point in the heatmap is different from the annotation, or where most of the annotations
lie, as shown in the 2nd and 4th row in Figure 4. Still, our model can predict heatmap response at some level in the annotated
regions. Properly speaking, our model’s predictions are not totally “wrong” in these cases and the predicted target determined
from our heatmap still makes some sense. It is possible that the performance of the model increases if more annotations are
obtained.
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Figure 3: Visualizations of the output heatmaps of our model and the VideoAtt model with and without a depth map as input.
The left two columns are the model predictions without using a depth map as input, and the right two columns are the model
predictions using a depth map as input. Predicted targets are plotted in yellow and the ground truth annotations are plotted in
red. The average annotation is plotted in blue.
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Figure 4: Example failure cases of our model on the GazeFollow (row 1 & 2) and VideoAttentionTarget (row 3 & 4) datasets.
Predicted targets are plotted in yellow and the ground truth annotations are plotted in red. The average annotations for images
in the GazeFollow dataset are plotted in blue



